Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (07): 154-159.doi: 10.13475/j.fzxb.20190707706

• Apparel Engineering • Previous Articles     Next Articles

Garment production line balance based on genetic algorithm and simulation

HUANG Zhenzhen1,2(), MOK Pikyin3,4, WEN Lihong1   

  1. 1. Clothing and Design Faculty, Minjiang University, Fuzhou, Fujian 350108, China
    2. Fujian Clothing Industry Technology Development Base, Fuzhou, Fujian 350108, China
    3. Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China;
    4. Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, Guangdong 518000, China
  • Received:2019-07-31 Revised:2020-04-13 Online:2020-07-15 Published:2020-07-23

Abstract:

The low production efficiency and the long production cycle are among the common problems in the clothing industry. A method for balancing the production line with automatic workstation scheduling and production simulation was proposed. By analyzing the influencing factors for balancing the garment production line, the garment production model using topology model and genetic algorithms was developed to optimize the production schedule using MatLab (R2016b). Based on the optimized schedule, simulation technology was adopted to further improve the flow balance, considering the order quantity and equipment status. The production flow was simulated according to actual production line formulation using the Plant Simulation software. Quantitative and visual simulation results were obtained, supporting the re-optimization of the production flow balance. The proposed method was verified with real production data. An efficiency of 90.8% was achieved for experimental production line, representing a 12.8% improvement comparing with the actual production data. It shows that the proposed method can shorten the production cycle, and it provides ideas for the development of the garment production flow optimization and simulation system.

Key words: garment production line, production process arrangement, genetic algorithm, production line balance, production line simulation

CLC Number: 

  • TS941

Fig.1

Optimization algorithm for garment production line balance"

Fig.2

Dress sketch. (a) Front details; (b) Back details"

Fig.3

Flowchart for skirt manufacturing"

Fig.4

Workstation scheduling"

Tab.1

Restructured workstation scheduling"

工位编号 工序编号 节拍/s 设备 工位编号 工序编号 节拍/s 设备
A 4、10、11 94.92 四线锁边机、五线锁边机 G 15 108.00 平缝机
B 5、12 94.54 平缝机 H 16 104.73 五线锁边机
C 1、6 75.38 平缝机 I 2、17 58.91 四线锁边机
D 3、14 98.18 绷缝机、平缝机 J 18~26 122.18 平缝机
E 7、8 93.8 四线锁边机 K 18~26 122.18 平缝机
F 9、13 91.55 平缝机 L 18~26 122.18 平缝机

Fig.5

Simulation model for production flow"

Fig.6

Dynamic chart for production flow simulation"

Fig.7

Pitch time of work stations"

[1] 郭钊侠, 方建安. 遗传算法在服装生产流水线平衡问题中的应用[J]. 计算机仿真, 2003,20(11):98-99.
GUO Zhaoxia, FANG Jian. Application of genetic algorithm in production line balance of garment production[J]. Computer Simulation, 2003,20(11):98-99.
[2] 梁会芹, 费树岷. 自适应遗传算法在服装生产流水线平衡问题中的应用[J]. 工业控制计算机, 2009,22(11):57-59.
LIANG Huiqin, FEI Shumin. Adaptive general algorithm to assembly line balancing of clothing production[J]. Industrial Control Computer, 2009,22(11):57-59.
[3] 于昕辰, 曾培峰, 赵冉, 等. 基于蚁群算法的服装生产流水线作业平衡[J]. 东华大学学报(自然科学版), 2014,40(4):456-460.
YU Xinchen, ZENG Peifeng, ZHAO Ran, et al. The balance of production line of garment production based on antcolony algorithm[J]. Journal of Donghua University (Natural Science), 2014,40(4):456-460.
[4] 闫亦农, 刘立枝, 雒斌钰, 等. 基于粒子群算法的服装生产流水线编制[J]. 纺织学报, 2018,39(10):120-124.
YAN Yinong, LIU Lizhi, LUO Binyu, et al. Arrangement of garment production line by particle swarm algorithm[J]. Journal of Textile Research, 2018,39(10):120-124.
[5] 徐燕妮, 周海媚, 王立川, 等. 服装缝制流水线仿真与评价指标[J]. 纺织学报, 2015,36(12):146-151.
XU Yanni, ZHOU Haimei, WANG Lichuan, et al. Simulation of clothing sewing line and evaluation indexes[J]. Journal of Textile Research, 2015,36(12):146-151.
[6] CUI Huirong, YAN Yinong. The optimization design of uniform's hanging production line[J]. International Jouranl of Clothing Science and Technology, 2014,27(3):370-387.
[7] 王国新, 宁汝新, 王爱民. 基于仿真的生产调度优化技术研究[J]. 计算机集成制造系统, 2007,13(7):1419-1427.
WANG Guoxin, NING Ruxin, WANG Aimin. Production optimal scheduling technology based on simulation[J]. Computer Integrated Manufacturing Systems, 2007,13(7):1419-1427.
[8] 刘谣. 基于ProModel仿真系统的服装混合流水线平衡优化[D]. 上海: 东华大学, 2015: 18-28.
LIU Yao. Clothing mixed-model assembly line balancing and optimization based on promodel simulation system[D]. Shanghai: Donghua University, 2015: 18-28.
[9] 马玉敏, 樊留群, 张为民, 等. 基于仿真的车间作业计划优化设计[J]. 系统仿真学报, 2007,19(19):4548-4552.
MA Yumin, FAN Liuqun, ZHANG Weimin, et al. Optimization of job-shop scheduling based on simula-tion[J]. Journal of System Simulation, 2007,19(19):4548-4552.
[10] 李彬彬. 基于遗传算法的多目标生产作业调度研究:以某服装企业为背影[D]. 上海: 东华大学, 2014: 12-16.
LI Binbin. The research on multi-objective production scheduling based on genetic algorithm:on the background of a clothing enterprise[D]. Shanghai: Donghua University, 2014: 12-16.
[11] 裴小兵, 谭林林. 基于Em-plant的作业车间生产批量优化研究[J]. 系统仿真学报, 2015,27(7):1458-1467.
PEI Xiaobing, TAN Linlin. Research on optimization lot sizing of job shop based on Em-plant[J]. Journal of System Simulation, 2015,27(7):1458-1467.
[12] 刘光富, 李苗. 基于精益思想的生产线改造仿真与研究[J]. 工业工程, 2008,11(6):76-79.
LIU Guangfu, LI Miao. Research on reconstruction and simulation of production line based on lean thought[J]. Industrial Engineering Journal, 2008,11(6):76-79.
[1] ZHANG Zhuo, CONG Honglian, JIANG Gaoming, DONG Zhijia. Polo shirt rapid style recommendation system based on interactive genetic algorithm [J]. Journal of Textile Research, 2021, 42(01): 138-144.
[2] LI Liang, NI Junfang. Automatic generation algorithm for pattern processing codes of quilting machines [J]. Journal of Textile Research, 2020, 41(11): 162-167.
[3] XIE Ziang, DU Jinsong, ZHAO Guohua. Adaptive dynamic scheduling of garment hanging production line [J]. Journal of Textile Research, 2020, 41(10): 144-149.
[4] ZHANG Xiaoxia, LIU Fengkun, MAI Wei, MA Chongqi. Prediction of loom efficiency based on BP neural network and its improved algorithm [J]. Journal of Textile Research, 2020, 41(08): 121-127.
[5] ZHENG Xiaohu, BAO Jinsong, MA Qingwen, ZHOU Heng, ZHANG Liangshan. Spinning workshop collaborative scheduling method based on simulated annealing genetic algorithm [J]. Journal of Textile Research, 2020, 41(06): 36-41.
[6] MO Shuai, FENG Zhanyong, TANG Wenjie, DANG Heyu, ZOU Zhenxing. Performance optimization of elastic spindle pipe based on neural network and genetic algorithm [J]. Journal of Textile Research, 2020, 41(04): 161-166.
[7] HUANG Qi, ZHOU Qihong, ZHANG Qian, WANG Shaozong, FAN Wei, SUN Huifeng. Layout optimization of dip dyeing workshop based on system layout planning-genetic algorithm [J]. Journal of Textile Research, 2020, 41(03): 84-90.
[8] ZHANG Xujing, WANG Lichuan, CHEN Yan. Balancing optimization of garment sewing assembly line based on genetic algorithm [J]. Journal of Textile Research, 2020, 41(02): 125-129.
[9] WANG Xiaohui, LIU Yuegang, MENG Zhuo, SUN Yize. Optimization of process parameters for 3D additive screen printing based on genetic algorithm and neural network [J]. Journal of Textile Research, 2019, 40(11): 168-174.
[10] MENG Shuo, PAN Ruru, GAO Weidong, WANG Jing'an, ZHOU Lijun. Research on weaving scheduling using main objective evolutionary genetic algorithm [J]. Journal of Textile Research, 2019, 40(08): 169-174.
[11] REN Huiying, ZOU Kun, HU Xiaorong. Simulation platform for chemical filament automatic doff system [J]. Journal of Textile Research, 2019, 40(07): 151-157.
[12] . Optimum and application of automatic cotton blending based on high volume instrument data by improved genetic algorithm [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 151-155.
[13] . Worsted spinning process parameters inversion model using mixed population genetic neural network [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(07): 149-154.
[14] LIU Gui;YU Weidong. Worsted roving forecast based on genetic algorithm and BP neural network [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(05): 28-33.
[15] CHEN Jianneng;ZHAO Xiong;ZHANG Guofeng;ZHAO Yun. Parameter optimization of a new weft insertion mechanism based on improved NSGA-Π [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(1): 110-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!