Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (01): 174-183.doi: 10.13475/j.fzxb.20190801610

• Comprehensive Review • Previous Articles     Next Articles

Research and development progress of bio-based polyester and polyamide fibers

DONG Kuiyong1,2, YANG Tingting1,3, WANG Xueli3, HE Yong3(), YU Jianyong3   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. China Textile Information Center, Beijing 100020, China
    3. Innovation Center for Textile Science and Technology,Donghua University, Shanghai 201620, China
  • Received:2019-08-07 Revised:2019-10-28 Online:2020-01-15 Published:2020-01-14
  • Contact: HE Yong E-mail:yhe@dhu.edu.cn

Abstract:

To promote the transformation, upgrading and sustainable development of China's chemical fiber industry, this paper reviewed the global market, technology development and trend of bio-based polyester and polyamide fibers with bio-based polyethylene terephthalate, polytrimethylene terephthalate, polylactic acid, poly(ethylene furandicarboxylate), poly(propylene furandicaboxylate), polyamide 56 fibers as representatives, summarized and analyzed the global patent distribution of bio-based fibers, the patent strategy and technology of the major organizations in the world. Based on this and the actual situation of domestic industry of polymer materials, the key item was suggested to break through the core technology in preparation of strategic bio-based monomers such as ethylene glycol, terephthalic acid and 1,6-hexanediamine. At the same time, some advices were put forward on the major tasks and development path for research and development of bio-based polyester and polyamide fibers in China.

Key words: bio-based fiber, polyester fiber, polyamide fiber, polyamide 56 fiber, bio-based monomer

CLC Number: 

  • TB332

Tab.1

Market size of major bio-based polyester resins and polyamide resins from 2011 to 2022万t"

年份 PLA PET PTT PEF PA
2011 18 50 9 0 6
2012 19 60 9 0 6
2013 19 64 11 0 8
2014 20 65 12 0 10
2015 20 64 12 0 12
2016 21 64 15 0 16
2017 21 55 16 1 25
2018 21 55 16 2 25
2019 23 53 17 2 26
2020 24 51 16 4 26
2021 24 51 16 5 27
2022 33 50 17 7 27

Fig.1

Anellotech's non-edible thermo catalytic biomass conversion process for aromatic hydrocarbon"

Fig.2

Virent's process for bio-based PX"

Fig.3

Changes in annual global quantity of PTT related open literatures (including patents and papers)"

Tab.2

Number of public patents of major development companies and universities in PTT field"

机构名称 专利数量 机构名称 专利数量
东丽 529 盛虹 35
旭化成 424 杰事杰 35
杜邦 373 LG 31
帝人 249 GE 25
东洋纺 91 尤尼吉可 23
晓星 69 BBC 22
SABIC 62 宝理塑料 20
东华大学 60 宝洁 20
韩国可隆 49 恒力 18
三菱 45 苏州龙杰 15
壳牌 43

Tab.3

Number of public patents in various languages in PTT field"

日文 中文 英文 韩文 德文 法文
1 707 1 537 1 239 422 109 32

Fig.4

Thermal storage performance of new bulky fiber (SOLOTEX?RC) (a) and new thermal storage fabric (SOLOTEX?THERMO) (b) developed by TEIJIN"

Tab.4

Number of public patents in various languages in PTT field from 2016 to 2019"

中文 英文 韩文 日文 德文 法文
222 138 90 66 8 5

Fig.5

Changes in annual global quantity of PLA related literatures (patents and papers) (a) and Chinese and English patents (b)"

Tab.5

Number of public patents in various languages in PLA field"

语种 专利数量 语种 专利数量
英文 12 786 法文 486
中文 10 353 西班牙文 128
日文 8 566 葡萄牙文 105
韩文 2 374 意大利文 74
德文 1 422 俄文 60

Tab.6

Number of public patents of major development companies in the PLA field"

机构名称 专利数量 机构名称 专利数量

Abbott 290
东丽 1 218
P&G 155 尤尼吉可 621
Du Pont 146 三菱 532
MIT 112 三井 497
Dow 70 帝人 406
Eastman 56
丰田 239
NatureWorks 20 BASF 154

东华大学 225 Arkema 88
长春应化所 182 Henkel 63
上海交大 159 Evonik 60
四川大学 155 Novamont 54
华南理工 130 PURAC 51
浙江大学 128
LG 306
同济大学 105 KIST 123
三养社 74
SK 74
三星 45

Fig.6

Changes in annual global quantity of open literatures in PEF (a) & PTF (b) field"

Tab.7

Number of public patents of major development companies in PEF field"

机构名称 PEF专利数量 机构名称 PEF专利数量
Furanix 31 花王 5
ALPLA 15 Sulzer 5
宝洁 15 东洋纺 5
佳能 15 浙江大学 4
普利司通 8 杜邦 3
可口可乐 7 江南大学 3
Carbios 6 宁波材料所 3
东丽 5 ADM 2
伊斯曼 5 长春应化所 2

Tab.8

Number of public patents of major development companies in PTF field"

机构名称 PTF专利数量 机构名称 PTF专利数量
杜邦 10 Aurign 4
佳能 5 长春应化所 1
可口可乐 3 大连物化所 1
ADM 2 三菱 1
江南大学 2 东丽 1

Tab.9

Number of public patents of major development companies and universities in PA56 field"

机构名称 专利数量 机构名称 专利数量
凯赛 42 军需所/恒星 9
东丽 36 中石化 6
东华大学 20 广东威林 4
三菱 16 罗地亚 4

Fig.7

Changes in annual global quantity of open literatures (patents and papers) in PA56 field"

[1] 王启明. 生物基聚酯PTT与PDT的发展概况[J]. 高分子通报, 2013 (10):129-135.
WANG Qiming. From PTT to PDT, development of biological based polyester[J]. Polymer Bulletin, 2013(10):129-135.
[2] 陈力群. 生物基PDT聚酯产品性能研究[J]. 国际纺织导报, 2014, 42(3):36,38-40.
CHEN Liqun. Study on the performance of polydihydricals alcohol terephthalate (PDT) products[J]. Melliand China, 2014, 42(3):36,38-40.
[3] 蒋晓东, 王建坤, 郭晶. 新型聚酯纤维PTT的研究进展[J]. 纺织科学与工程学报, 2018,35(4):167-170.
JIANG Xiaodong, WANG Jiankun, GUO Jing. Research progress of new polyester fiber PTT[J]. Journal of Textile Science and Engineering, 2018,35(4):167-170.
[4] 朱平, 董侠, 王笃金. 长碳链聚酰胺基热塑性弹性体研究进展[J]. 高分子通报, 2016 (9):171-181.
ZHU Ping, DONG Xia, WANG Dujin. Research progress of long carbon chain polyamide based thermoplastic elastomers[J]. Polymer Bulletin, 2016(9):171-181.
[5] KEDO Alex. 具有创新性和成本竞争力的纺织用生物基聚酰胺[J]. 国际纺织导报, 2016,44(5):12-14,28.
KEDO Alex. Innovative, cost-competitive, bio-based polyamide for textiles[J]. Melliand China, 2016,44(5):12-14, 28.
[6] 李蒙蒙, 胡柳, 侯爱芹, 等. 生物基纤维尼龙PA56染色性能及产品开发研究进展[J]. 染料与染色, 2016,53(5):25-30.
LI Mengmeng, HU Liu, HOU Aiqin, et al. Development of dyeing property of bio-based nylon PA56[J]. Dyestuffs and Coloration, 2016,53(5):25-30.
[7] 徐卫海, 娄雪芹, 王学利, 等. 生物基戊二胺己二酸盐改性聚酯的合成及结构分析[J]. 东华大学学报(自然科学版), 2016,42(5):663-668.
XU Weihai, LOU Xueqin, WANG Xueli, et al. Synjournal and structure analysis of polyester modified with bio-based diaminopentane hexanedioic salt[J]. Journal of Donghua University (Natural Science Edition), 2016,42(5):663-668.
[8] 王学利, 张晨, 俞建勇, 等. 生物基聚己二酸戊二胺聚合物结构及高速纺长丝性能[J]. 合成纤维, 2015,44(9):1-5.
WANG Xueli, ZHANG Chen, YU Jianyong, et al. The structure of poly(adipic acid-1,5-diaminopentane) and its high speed spun filament properties[J]. Synthetic Fiber in China, 2015,44(9):1-5.
[9] Sustainability: PlantBottleTM packaging[EB/OL]. [2019-06-20]. https://www.coca-colaafrica.com/stories/sustainability-packaging-plantbottle#.
[10] Meet our partners: plant pet technology collabora-tive[EB/OL]. [2019-06-20]. https://www.coca-colacompany.com/stories/meet-our-partners-plant-pet-technology-collaborative.
[11] Bio-TCatTM for renewable chemicals & fuels[EB/OL]. [2019-06-20]. http://anellotech.com/bio-tcat%E2%84%A2-renewable-chemicals-fuels.
[12] Products: chemicals overview[EB/OL]. [2019-06-20]. https://www.virent.com/products/chemicals/.
[13] Products to make the world more natural[EB/OL]. [2019-06-20]. https://gevo.com/ingredient-products/.
[14] Nova-Institut. Bio-based building blocks and polymers: global capacities and trends 2017-2022[R/OL]. http://bio-based:eu/downloads/bio-based-building-blocks-and-polymers-global-capacities-and-trends-2016-2022/.
[15] MAZANEC T J, WHITING J P, PESA F, et al. Regeneration of catalytic fast pyrolysis catalyst: WO2014165223A2[P]. 2019-01-08.
[16] SHI J, CHENG Y T, SONG R, et al. Catalysts and processes for producing p-xylene from biomass: WO2015089442A1[P]. 2015-06-18.
[17] SORENSEN C M, SONG R, Processes for converting biomass to BTX with low sulfur, nitrogen and olefin content via a catalytic fast pyrolysis process: WO2016004206A1[P]. 2017-05-10.
[18] TANZIO M, SORENSEN C M, SCHNEIDKRAUT M E, et al. Improved processes for recovering valuable components from a catalytic fast pyrolysis process: WO2016004248A2[P]. 2016-01-07.
[19] SORENSEN C, Improved catalytic fast pyrolysis process: WO2016081148A1[P]. 2016-05-26.
[20] SORENSEN C, MAZANEC T. Method for production of biomass-derived chemical intermediates: WO2016168237A1[P]. 2016-10-20.
[21] SHI J, SORENSEN C, MAZANEC T, et al. Improved catalytic fast pyrolysis process with impurity removal: WO2017003790A1[P]. 2017-01-05.
[22] SORENSEN C. Chemicals and fuel blendstocks by a catalytic fast pyrolysis process: WO2017136176A1[P]. 2017-08-10.
[23] SORENSEN C. Chemicals and fuel blendstocks by a catalytic fast pyrolysis process: WO2017136177A1[P]. 2017-08-10.
[24] DIGNE R, RUIZ Martinez C, PAGOT A B, et al. Efficient recovery of valuable components from biomass catalytic pyrolysis effluent: WO2019022743A1[P]. 2019-01-31.
[25] BLOMMEL P, HELD A, GOODWIN R, et al. Process for converting biomass to aromatic hydrocarbons: WO2014190161A1[P]. 2014-11-27.
[26] BLANK B, CORTRIGHT R, BECK T, et al. Improved catalysts for hydrodeoxygenation of oxygenated hydrocarbons: WO2014028723A1[P]. 2014-02-10.
[27] QIAO M, WOODS E M, MYREN P, et al. Production of chemicals and fuels from biomass by decomposition to oxygenates: WO2012162403A1[P]. 2012-11-19.
[28] KANIA J, QIAO M, WOODS E M, et al. Apparatus and method for converting biomass to feedstock for biofueland biochemical manufacturing processes:WO2012151275A1 [P]. 2015-12-15.
[29] CORTRIGHT R D, VOLLENDORF N W, HORNEMANN C C, et al. Catalysts and methods for reforming oxygenated compounds: WO2007075476A2[P]. 2009-08-27.
[30] TAYLOR T J, TAYLOR J D, PETERS M W, et al. Variations on prins-like chemistry to produce 2,5-dime-thylhexadiene from isobutanol:US20120271082A1[P]. 2012-10-25.
[31] TANAKA Y, MORIMOTO K, OKUBO T, et al. Method for manufacturing biomass-derived polyester having excellent dyeability and biomass-derived polyester:WO2012173220A1[P]. 2012-12-20.
[32] PETERS M W, HENTON D E, TAYLOR J D, et al. Manufacture of xylene from C4 and C5 molecules obtained from fermentation of biomass: WO2012061372A1[P]. 2012-05-10.
[33] PETERS M W, TAYLOR J D, JENNI M, et al. Integrated process to selectively convert renewable isobutanol to p-xylene: WO2011044243A1[P]. 2011-04-14
[34] PETERS M W, TAYLOR J D, JENNI M M, et al. Integrated methods of preparing renewable chemicals: WO2011085223A1[P]. 2011-07-14
[35] Materials: SOLOTEX[EB/OL]. [2019-06-20]. https://www2.teijin-frontier.com/english/sozai/specifics/solotex.html.
[1] WANG Ying, WANG Yiting, WU Jiaqing, GUO Yafei, HAO Xinmin. Preparation of compound antistatic spinning oil for bio-based polyamide 56 and its effect on staple fiber spinnability [J]. Journal of Textile Research, 2021, 42(01): 84-89.
[2] WEI Yanhong, LIU Xinjin, XIE Chunping, SU Xuzhong, JI Yijun. Structure and properties of several differentiated polyester fibers [J]. Journal of Textile Research, 2019, 40(11): 13-19.
[3] SONG Xing, ZHU Chengyan, CAI Fengjie, LÜ Zhining, TIAN Wei. Influence of alkali treatment on mechanical properties of polyester/photosensitive resin composites [J]. Journal of Textile Research, 2019, 40(07): 97-102.
[4] WANG Yan, WANG Lianjun, CHEN Jianfang. Preparation and properties of guanidine-containing antibacterial polyester fibers [J]. Journal of Textile Research, 2019, 40(04): 26-31.
[5] ZHANG Lin, WU Hailiang, SHEN Yanqin, MAO Ningtao. Influence of alkali treatment on wicking effect and strength of profiled polyester yarn [J]. Journal of Textile Research, 2019, 40(01): 73-78.
[6] . Intelligent determination of blending fiber for polytrimethylene terephthalate and polybutylene terephthalate [J]. Journal of Textile Research, 2018, 39(09): 169-175.
[7] . Model establishment and validation of waste polyester fiber products based on near infrared quantitative analysis [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 63-68.
[8] . Structure and physicochemical properties of polyester/polyamide copolymer fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 1-7.
[9] . Research progress and development direction of surface hydrophilic modification of polyester fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 156-164.
[10] . Preparation and application of anti-reactive dye staining agent for modified polyester fibers [J]. Journal of Textile Research, 2015, 36(06): 72-76.
[11] . Environment-friendly processing technology and application of bio-based polyamide fiber [J]. Journal of Textile Research, 2015, 36(04): 160-164.
[12] . Study on acid dyestuff dyeing kinetics of polyamide 56 fiber compared with polyamide 6 and 66 [J]. Journal of Textile Research, 2015, 36(02): 77-80.
[13] . Union dyeing of polyester filaments / microporous polyester fibers with one-bath process [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(6): 68-0.
[14] Xue-Feng GUO. Influence of light excitation on afterglow and thermoluminescence characteristics of luminous fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(3): 9-14.
[15] . Preparation and properties of new flame retardant hydrophilic polyester [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(2): 18-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!