Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (01): 174-183.doi: 10.13475/j.fzxb.20190801610
• Comprehensive Review • Previous Articles Next Articles
DONG Kuiyong1,2, YANG Tingting1,3, WANG Xueli3, HE Yong3(), YU Jianyong3
CLC Number:
[1] | 王启明. 生物基聚酯PTT与PDT的发展概况[J]. 高分子通报, 2013 (10):129-135. |
WANG Qiming. From PTT to PDT, development of biological based polyester[J]. Polymer Bulletin, 2013(10):129-135. | |
[2] | 陈力群. 生物基PDT聚酯产品性能研究[J]. 国际纺织导报, 2014, 42(3):36,38-40. |
CHEN Liqun. Study on the performance of polydihydricals alcohol terephthalate (PDT) products[J]. Melliand China, 2014, 42(3):36,38-40. | |
[3] | 蒋晓东, 王建坤, 郭晶. 新型聚酯纤维PTT的研究进展[J]. 纺织科学与工程学报, 2018,35(4):167-170. |
JIANG Xiaodong, WANG Jiankun, GUO Jing. Research progress of new polyester fiber PTT[J]. Journal of Textile Science and Engineering, 2018,35(4):167-170. | |
[4] | 朱平, 董侠, 王笃金. 长碳链聚酰胺基热塑性弹性体研究进展[J]. 高分子通报, 2016 (9):171-181. |
ZHU Ping, DONG Xia, WANG Dujin. Research progress of long carbon chain polyamide based thermoplastic elastomers[J]. Polymer Bulletin, 2016(9):171-181. | |
[5] | KEDO Alex. 具有创新性和成本竞争力的纺织用生物基聚酰胺[J]. 国际纺织导报, 2016,44(5):12-14,28. |
KEDO Alex. Innovative, cost-competitive, bio-based polyamide for textiles[J]. Melliand China, 2016,44(5):12-14, 28. | |
[6] | 李蒙蒙, 胡柳, 侯爱芹, 等. 生物基纤维尼龙PA56染色性能及产品开发研究进展[J]. 染料与染色, 2016,53(5):25-30. |
LI Mengmeng, HU Liu, HOU Aiqin, et al. Development of dyeing property of bio-based nylon PA56[J]. Dyestuffs and Coloration, 2016,53(5):25-30. | |
[7] | 徐卫海, 娄雪芹, 王学利, 等. 生物基戊二胺己二酸盐改性聚酯的合成及结构分析[J]. 东华大学学报(自然科学版), 2016,42(5):663-668. |
XU Weihai, LOU Xueqin, WANG Xueli, et al. Synjournal and structure analysis of polyester modified with bio-based diaminopentane hexanedioic salt[J]. Journal of Donghua University (Natural Science Edition), 2016,42(5):663-668. | |
[8] | 王学利, 张晨, 俞建勇, 等. 生物基聚己二酸戊二胺聚合物结构及高速纺长丝性能[J]. 合成纤维, 2015,44(9):1-5. |
WANG Xueli, ZHANG Chen, YU Jianyong, et al. The structure of poly(adipic acid-1,5-diaminopentane) and its high speed spun filament properties[J]. Synthetic Fiber in China, 2015,44(9):1-5. | |
[9] | Sustainability: PlantBottleTM packaging[EB/OL]. [2019-06-20]. https://www.coca-colaafrica.com/stories/sustainability-packaging-plantbottle#. |
[10] | Meet our partners: plant pet technology collabora-tive[EB/OL]. [2019-06-20]. https://www.coca-colacompany.com/stories/meet-our-partners-plant-pet-technology-collaborative. |
[11] | Bio-TCatTM for renewable chemicals & fuels[EB/OL]. [2019-06-20]. http://anellotech.com/bio-tcat%E2%84%A2-renewable-chemicals-fuels. |
[12] | Products: chemicals overview[EB/OL]. [2019-06-20]. https://www.virent.com/products/chemicals/. |
[13] | Products to make the world more natural[EB/OL]. [2019-06-20]. https://gevo.com/ingredient-products/. |
[14] | Nova-Institut. Bio-based building blocks and polymers: global capacities and trends 2017-2022[R/OL]. http://bio-based:eu/downloads/bio-based-building-blocks-and-polymers-global-capacities-and-trends-2016-2022/. |
[15] | MAZANEC T J, WHITING J P, PESA F, et al. Regeneration of catalytic fast pyrolysis catalyst: WO2014165223A2[P]. 2019-01-08. |
[16] | SHI J, CHENG Y T, SONG R, et al. Catalysts and processes for producing p-xylene from biomass: WO2015089442A1[P]. 2015-06-18. |
[17] | SORENSEN C M, SONG R, Processes for converting biomass to BTX with low sulfur, nitrogen and olefin content via a catalytic fast pyrolysis process: WO2016004206A1[P]. 2017-05-10. |
[18] | TANZIO M, SORENSEN C M, SCHNEIDKRAUT M E, et al. Improved processes for recovering valuable components from a catalytic fast pyrolysis process: WO2016004248A2[P]. 2016-01-07. |
[19] | SORENSEN C, Improved catalytic fast pyrolysis process: WO2016081148A1[P]. 2016-05-26. |
[20] | SORENSEN C, MAZANEC T. Method for production of biomass-derived chemical intermediates: WO2016168237A1[P]. 2016-10-20. |
[21] | SHI J, SORENSEN C, MAZANEC T, et al. Improved catalytic fast pyrolysis process with impurity removal: WO2017003790A1[P]. 2017-01-05. |
[22] | SORENSEN C. Chemicals and fuel blendstocks by a catalytic fast pyrolysis process: WO2017136176A1[P]. 2017-08-10. |
[23] | SORENSEN C. Chemicals and fuel blendstocks by a catalytic fast pyrolysis process: WO2017136177A1[P]. 2017-08-10. |
[24] | DIGNE R, RUIZ Martinez C, PAGOT A B, et al. Efficient recovery of valuable components from biomass catalytic pyrolysis effluent: WO2019022743A1[P]. 2019-01-31. |
[25] | BLOMMEL P, HELD A, GOODWIN R, et al. Process for converting biomass to aromatic hydrocarbons: WO2014190161A1[P]. 2014-11-27. |
[26] | BLANK B, CORTRIGHT R, BECK T, et al. Improved catalysts for hydrodeoxygenation of oxygenated hydrocarbons: WO2014028723A1[P]. 2014-02-10. |
[27] | QIAO M, WOODS E M, MYREN P, et al. Production of chemicals and fuels from biomass by decomposition to oxygenates: WO2012162403A1[P]. 2012-11-19. |
[28] | KANIA J, QIAO M, WOODS E M, et al. Apparatus and method for converting biomass to feedstock for biofueland biochemical manufacturing processes:WO2012151275A1 [P]. 2015-12-15. |
[29] | CORTRIGHT R D, VOLLENDORF N W, HORNEMANN C C, et al. Catalysts and methods for reforming oxygenated compounds: WO2007075476A2[P]. 2009-08-27. |
[30] | TAYLOR T J, TAYLOR J D, PETERS M W, et al. Variations on prins-like chemistry to produce 2,5-dime-thylhexadiene from isobutanol:US20120271082A1[P]. 2012-10-25. |
[31] | TANAKA Y, MORIMOTO K, OKUBO T, et al. Method for manufacturing biomass-derived polyester having excellent dyeability and biomass-derived polyester:WO2012173220A1[P]. 2012-12-20. |
[32] | PETERS M W, HENTON D E, TAYLOR J D, et al. Manufacture of xylene from C4 and C5 molecules obtained from fermentation of biomass: WO2012061372A1[P]. 2012-05-10. |
[33] | PETERS M W, TAYLOR J D, JENNI M, et al. Integrated process to selectively convert renewable isobutanol to p-xylene: WO2011044243A1[P]. 2011-04-14 |
[34] | PETERS M W, TAYLOR J D, JENNI M M, et al. Integrated methods of preparing renewable chemicals: WO2011085223A1[P]. 2011-07-14 |
[35] | Materials: SOLOTEX[EB/OL]. [2019-06-20]. https://www2.teijin-frontier.com/english/sozai/specifics/solotex.html. |
|