Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (07): 9-14.doi: 10.13475/j.fzxb.20190802106

• Fiber Materials • Previous Articles     Next Articles

Effect of low refractive resin on structure and properties of spun-dyed viscose fibers

LIU Xi1,2, WANG Dong1,2, ZHANG Liping1,2, LI Min1,2, FU Shaohai1,2()   

  1. 1. Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2019-08-08 Revised:2020-04-13 Online:2020-07-15 Published:2020-07-23
  • Contact: FU Shaohai E-mail:shaohaifu@hotmail.com

Abstract:

To solve the problem of the pale color, spun-dyed viscose fiber was treated to improve the color depth using low refractive resin. This research investigated the effects of resin type, dosage of resin, rolling ratio, baking time and baking temperature on color brightness (L value), breaking strength and elongation at break of spun-dyed viscose fiber. In addition analytical instruments such as infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy were employed to study varieties of the chemical structures, surface element composition, crystallization performance, surface topography of spun-dyed viscose fibers after resin finishing. The results show that when the dosage of fabric deepening agent, rolling ratio, baking temperature and baking time are set to 80 g/L, 90%, 150 ℃, and 180 s respectively, the L value of the spun-dyed viscose fiber is reduced to 11.84, and the retention rate of breaking strength and elongation at break are 70.62% and 70.11% respectively. After the resin treatment, crystallinity of the spun-dyed viscose fiber decreases and fiber surface becomes smoother, whereas silicon functional groups on fiber surface are increased.

Key words: spun-dyed viscose fiber, low refractive resin, deep finishing, mechanical property

CLC Number: 

  • TS195.6

Fig.1

Finishing mechanism of low refractive resin deepening spun-dyed viscose fiber. (a) Hydrolysis of silicone resin; (b) Condensation of resins; (c) Reaction of resin and fiber"

Tab.1

Effect of type of low refractive index resin on properties of spun-dyed viscose fiber"

树脂名称 L 断裂强力/cN 断裂伸长率/%
未整理 13.18 3.71 18.40
光亮剂SES-35 13.00 3.07 17.70
光亮剂SFS-36 13.02 3.11 18.20
增深剂S-24 13.09 3.03 17.60
增深增艳剂 13.01 3.01 17.40
织物增深剂EC-CD-R 12.95 3.08 17.40

Tab.2

Effect of dosage of fabric deepening agent on properties of spun-dyed viscose fiber"

EC-CD-R质量
浓度/(g·L-1)
L 断裂
强力/cN
断裂
伸长率/%
50 13.06 3.13 18.80
60 12.95 3.08 18.40
70 12.78 2.99 17.10
80 12.53 2.93 16.60
90 12.53 2.82 15.80
100 12.51 2.70 14.90

Tab.3

Effect of rolling ratio on properties of spun-dyed viscose fiber"

轧余率/% L 断裂强力/cN 断裂伸长率/%
60 12.60 3.02 17.80
70 12.57 3.00 16.80
80 12.51 2.93 16.60
90 12.42 2.91 16.00
100 12.42 2.79 14.20

Tab.4

Effect of baking time on properties of spun-dyed viscose fiber"

焙烘时间/s L 断裂强力/cN 断裂伸长率/%
120 12.42 2.91 16.00
150 12.31 2.86 15.60
180 12.19 2.82 14.80
210 12.19 2.75 14.40
240 12.15 2.52 13.20

Tab.5

Effect of baking temperature on properties of spun-dyed viscose fiber"

焙烘温度/℃ L 断裂强力/cN 断裂伸长率/%
120 12.19 2.82 14.80
130 12.14 2.79 14.20
140 12.05 2.75 13.40
150 11.84 2.62 13.10
160 11.82 2.56 12.60

Fig.2

FT-IR spectra of spun-dyed viscose fiber before and after finishing"

Fig.3

SEM images of spun-dyed viscose fibers after fabric deepening agent EC-CD-R finishing at different mass concentrations"

Fig.4

XRD spectra of spun-dyed viscose fibers after fabric deepening agent EC-CD-R finishing at different mass concentrations"

Fig.5

Surface element of spun-dyed viscose fiber before and after finishing"

Fig.6

C1s spectra of spun-dyed viscose fiber before (a) and after (b) finishing"

[1] 付少海, 张凯, 孙贵生, 等. 纤维素纤维原液着色技术的研究进展[J]. 纺织导报, 2010 (5):73-75.
FU Shaohai, ZHANG Kai, SUN Guisheng, et al. Development of dope dyeing technology for cellulose fiber[J]. China Textile Leader, 2010(5):73-75.
[2] 张凯. Lyocell纤维原液着色用超细颜料的制备及其性能研究[D]. 无锡:江南大学, 2012: 1-2.
ZHANG Kai. Preparation and properties of ultrafine pigment[D]. Wuxi:Jangnan University, 2012: 1-2.
[3] 孙贵生, 万强, 毕其兵. 粘胶纤维原液着色超细紫色色浆分散性及纤维性能[J]. 人造纤维, 2010,40(5):2-4.
SUN Guisheng, WAN Qiang, BI Qibing. Dispersion of ultrafine purple color pigment for spun-dyed viscose fiber and properties of fiber[J]. Artificial Fiber, 2010,40(5):2-4.
[4] WANG Chunxia, DU Changsen, TIAN Anli, et al. Regenerated cellulose fibers spun-dyed with carbon black/latex composite dispersion[J]. Carbohydrate Polymers, 2014,101:905-911.
pmid: 24299855
[5] 许丹, 梅成国, 杜长森, 等. 水性色浆在再生纤维素纤维原液着色中的应用[J]. 纺织科技进展, 2016(8):33-35.
XU Dan, MEI Chengguo, DU Changsen, et al. Application of water-based pigment dispersion in mass coloration for regenerated cellulose fibers[J]. Progress in Textile Technology, 2016(8):33-35.
[6] 梁超. 真丝绸染色增深技术综述[J]. 丝绸, 1997(7):49-53.
LIANG Chao. Summary of silk dyeing and deepening technology[J]. Journal of Silk, 1997(7):49-53.
[7] 刘稀, 王冬, 张丽平, 等. 原液着色粘胶纤维的氧等离子体增深处理[J]. 印染, 2019,45(17):1-6.
LIU Xi, WANG Dong, ZHANG Liping, et al. Deepening effect of spun-dyed viscose fiber with oxygen plasma treatment[J]. China Dyeing & Finishing, 2019,45(17):1-6.
[8] JANG Jinho, JEONG Youngjin. Nano roughening of PET and PTT fabrics via continuous UV/O3 irradiation[J]. Dyes & Pigments, 2006,69(3):137-143.
[9] 程贞娟. 改性聚酯仿真丝织物的碱处理[J]. 纺织学报, 1997,18(1):34-37.
CHENG Zhenjuan. Alkali treatment of modified polyester silk fabric[J]. Journal of Textile Research, 1997,18(1):34-37.
[10] FUJIWARA T, SASAKI H. Bright polyester fiber for hard twisting: Japan, 256280[P]. 1997-09-30.
[11] 马志, 陈国强. 有机硅类增深剂对棉及真丝织物的增深[J]. 印染助剂, 2012,29(9):36-38.
MA Zhi, CHEN Guoqiang. Investigation of the deepening action of organic silicon on cotton and silk[J]. Textile Auxiliaries, 2012,29(9):36-38.
[12] 吴倩眉, 周奥佳, 阎克路. 黑色羊毛织物增深技术研究[J]. 毛纺科技, 2015,43(9):32-35.
WU Qianmei, ZHOU Aojia, YAN Kelu. Study on the darkening finishing of black wool fabric[J]. Wool Textile Journal, 2015,43(9):32-35.
[13] CAI J, ZHANG L, ZHOU J, et al. Microporous membranes prepared from cellulose in NaOH/thiourea aqueous solution[J]. Journal of Membrane Science, 2004,241(2):265-274.
[14] 颜东, 邓继勇, 汪南方, 等. 有机硅改性聚氨酯/丙烯酸酯共聚乳液对棉织物的抗皱整理[J]. 纺织学报, 2018,39(1):89-93, 110.
YAN Dong, DENG Jiyong, WANG Nanfang, et al. Anti-wrinkle finishing of organosilicone modified polyurethane/acrylate copolymer emulsion for cotton fabrics[J]. Journal of Textile Research, 2018,39(1):89-93, 110.
[1] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[2] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan / polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[3] LIU Shuqiang, WU Jie, WU Gaihong, YIN Xiaolong, LI Fu, ZHANG Man. Surface modification of basalt fiber using nano-SiO2 [J]. Journal of Textile Research, 2020, 41(12): 37-41.
[4] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[5] ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, LI Haiqiong. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber#br# [J]. Journal of Textile Research, 2020, 41(08): 9-14.
[6] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
[7] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[8] WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14.
[9] DING Fang, REN Xuehong. Flame-retardant finishing of polyester fabrics by grafting phosphorus-nitrogen compounds [J]. Journal of Textile Research, 2020, 41(03): 100-105.
[10] CUI Yifan, HOU Wei, ZHOU Qianxi, YAN Jun, LU Yanhua, HE Tingting. Influence of silk sericin temperature sensitive hydrogel on properties of cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 74-78.
[11] ZHANG Jiao, GAO Xuefeng, WANG Yuzhou, LIU Haihui, ZHANG Xingxiang. Preparation and properties of polyamide 66/amino-functionalized multi-walled carbon nanotubes fibers [J]. Journal of Textile Research, 2019, 40(11): 1-8.
[12] YANG Fan, LIU Junhua, BIAN Angting, WANG Yanping, QIAN Qiyuan, NI Jianhua, XIA Yumin, HE Yong, WANG Yimin. Influence of heat treatment on structure and properties of thermotropic liquid crystalline polyarylate fiber [J]. Journal of Textile Research, 2019, 40(11): 9-12.
[13] WU Liwei, WANG Wei, LIN Jiahorng, JIANG Qian. Preparation and mechanical properties of aramid/ ultra-high molecular weight polyethylene fabric reinforced polyurethane sandwich composite [J]. Journal of Textile Research, 2019, 40(07): 64-70.
[14] LIU Shuping, LI Liang, LIU Rangtong, CUI Shizhong, WANG Yanting. Structure and properties of keratin film modified by carboxymethyl cellulose sodium [J]. Journal of Textile Research, 2019, 40(06): 14-19.
[15] LIU Jinxin, ZHANG Haifeng, ZHANG Xing, HUANG Chen, ZHENG Xiaobing, JIN Xiangyu. Influence of multistage drawing and heat setting on structure and properties of polyethylene/polypropylene bicomponent fibers [J]. Journal of Textile Research, 2019, 40(05): 24-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!