Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (07): 167-173.doi: 10.13475/j.fzxb.20190805907

• Comprehensive Review • Previous Articles     Next Articles

Research progress in preparation and application of flexible zirconia nanofibers by electrospinning

WU Hong, LIU Chengkun(), MAO Xue, YANG Zhi, CHEN Meiyu   

  1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2019-08-26 Revised:2020-04-12 Online:2020-07-15 Published:2020-07-23
  • Contact: LIU Chengkun E-mail:fzlck@126.com

Abstract:

Aiming at the problem of insufficient flexibility of zirconia (ZrO2) nanofibers in the existing preparation methods, the research progress in the recent years in the application of electrospinning technology in the preparation of flexible ZrO2 nanofiber membranes was reviewed. Based on the existing research results, the process of electrospinning flexible ZrO2 nanofiber membranes was systematically described from three aspects, which are precursor solution, electrospinning process and calcination temperature. The morphology, pore structure and crystal structure of the flexible ZrO2 were summarized. The applications of flexible ZrO2 nanofiber membranes in energy, biology and other fields were introduced. The analysis shows that the flexible ZrO2 nanofiber membrane prepared by electrospinning technology has a series of excellent properties such as large specific surface area and high heat resistance. However, it still has the disadvantage of relatively poor toughness of the fiber membrane, which fails to meet the requirements of actual working conditions. It is pointed out that improving the overall mechanical properties of flexible ZrO2 nanofiber membranes and mass-producing them to meet practical applications should be the focus of future research.

Key words: electrospinning, zirconia, nanofiber membrane, preparation techniques

CLC Number: 

  • TQ340.64

Tab.1

Summary of precursor solution composition of flexible ZrO2 nanofiber membrane prepared by electrospinning"

组分 功能 原料 参考文献
锆源 提供锆元素 正丙醇锆、醋酸锆、氧化锆分散体、
乙酰丙酮锆、氧氯化锆
[16-20]
高分子聚合物 提高溶液的可纺性 聚环氧乙烷、聚乙烯醇、聚乙烯吡咯烷酮、
左旋聚乳酸、聚丙烯腈、聚己内酯
[21-26]
稳定剂 抑制氧化锆晶型转变 氧化钇、氧化铝、氧化铁 [27-29]

Tab. 2

Preparation process of flexible ZrO2 nanofiber membrane in different application fields"

前驱体溶液 纺丝参数 煅烧工艺 应用 参考文献
电压/
kV
距离/
cm
速度/
(mL·h-1)
聚丙烯腈/聚乙烯吡咯烷酮/
N,N-二甲基甲酰胺/异丙醇锆
15 - 1.1 2 ℃/min、270 ℃
(2 h,空气气氛);
2 ℃/min、1 100 ℃
(1 h, 氮气气氛)
染料敏化
太阳能电池
[43]
聚丙烯腈/聚乙烯吡咯烷酮/乙酸/N,N-二甲基甲酰胺/异丙醇锆 15 12 1.1 270 ℃ (2 h, 空气气氛)
2 ℃/min、1 100 ℃
(1 h, 氮气气氛)
染料敏化
太阳能电池
[44]
正丙醇锆/六水乙酸钇/聚乙烯吡咯烷酮 15 1 20 5 ℃/min、850 ℃
(空气气氛)
骨组织支架 [45]
氧化锆/氧化钇/二氧化硅 - - - 1 200 ℃
(空气气氛)
牙科复合材料 [46]
乙酸锆/聚乙烯吡咯烷酮/六水氯化铝 25 20 1 5 ℃/min、850 ℃
(2 h, 空气气氛)
红外隐身材料 [47]
聚乙烯醇/正硅酸乙酯/二甘醇/磷酸/过氧化氢/丙酮/乙醇/醋酸铋 16 15 1 800 ℃
(4 h, 空气气氛)
红外隐身材料 [48]
氧化锆/聚环氧乙烷/聚乙酰丙酮锆/甲醇/五水硝酸铒/六水硝酸镱 17.5 20 2 1 000 ℃
(1 h, 空气气氛)
发光材料 [49]
乙酸锆/六水硝酸钇/聚乙烯吡咯烷酮 25 20 1 5 ℃/min、1 200 ℃
(2 h, 空气气氛)
腐蚀性液体过滤 [40]
[1] LUO J M, LUO X B, HU C Z, et al. Zirconia (ZrO2) embedded in carbon nanowires via electrospinning for efficient arsenic removal from water combined with DFT studies[J]. ACS Applied Materials & Interfaces, 2016,8(29):18912-18921.
doi: 10.1021/acsami.6b06046 pmid: 27381268
[2] 白莹, 毛雪, 俞建勇, 等. 柔性YSZ-TiO2纳米纤维膜的制备及其光催化性能研究[J]. 化工新型材料, 2018,46(3):67-74.
BAI Ying, MAO Xue, YU Jianyong, et al. Preparation and photocatalytic performance of flexuble YSZ-TiO2 nanofibrous membrane[J]. New Chemical Materials, 2018,46(3):67-74.
[3] KOO J Y, LIM Y, KIM Y B, et al. Electrospun yttria-stabilized zirconia nanofibers for low-temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2017,42(24):15903-15907.
[4] ZHI M J, LEE S, MILLER N, et al. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode[J]. Energy & Environmental Science, 2012,5(5):7066-7071.
[5] JAYAKUMAR R, RAMACHANDRAN R, KUMAR P T S, et al. Fabrication of chitin-chitosan/nano ZrO2 composite scaffolds for tissue engineering applica-tions[J]. International Journal of Biological Macromolecules, 2011,49(3):274-280.
pmid: 21575656
[6] CHAN K, TSOI J K H, WU O K, et al. Mechanical and biological evaluations of novel electrospun PLLA composite scaffolds doped with oxide ceramics[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019,97:229-237.
pmid: 31132659
[7] ABE Y, KUDO T, TOMIOKA H, et al. Preparation of continuous zirconia fibres from polyzirconoxane synthesized by the facile one-pot reaction[J]. Journal of Materials Science, 1998,33(7):1863-1870.
doi: 10.1023/A:1004357405815
[8] YANG J, YOO J J, JANG H J, et al. Preparation and characterization of PAN based carbon fibers having zirconia nanofibers[J]. IEEE Transactions on Software Engineering, 2012,49(5):307-313.
[9] BUKHARI B S, IMRAN M, BASHIR M, et al. Honey mediated microwave assisted sol-gel synjournal of stabilized zirconia nanofibers[J]. Journal of Sol-Gel Science and Technology, 2018,87(3):554-567.
[10] 吕婷婷, 安瑛, 李好义, 等. 静电纺动物蛋白纳米纤维研究进展[J]. 纺织学报, 2019,40(12):140-145.
LÜ Tingting, AN Ying, LI Haoyi, et al. Research progress of electrospun animal protein nanofibers[J]. Journal of Textile Research, 2019,40(12):140-145.
[11] SHAO C L, GUAN H Y, LIU Y C, et al. A novel method for making ZrO2 nanofibres via an electrospinning technique[J]. Journal of Crystal Growth, 2004,267(1/2):380-384.
[12] YE Y P, LI J G, ZHOU H D, et al. Microstructure and mechanical properties of yttria-stabilized ZrO2/Al2O3 nanocomposite ceramics[J]. Ceramics International, 2008,34(8):1797-1803.
[13] 郭景坤. 关于陶瓷材料的脆性问题[J]. 复旦学报(自然科学版), 2003(6):822-827.
GUO Jingkun. The brittleness problem of ceramic material[J]. Journal of Fudan (Natural Science Edition), 2003(6):822-827.
[14] 潘梅, 刘久荣, 孟凡青, 等. ZrO2连续纤维研究进展[J]. 硅酸盐通报, 2001,20(1):41-45.
PAN Mei, LIU Jiurong, MENG Fanqing, et al. A review of research on zirconia fibres[J]. Bulletin of The Chinese Ceramic Society, 2001,20(1):41-45.
[15] 胡晓敏, 高杨, 吴宁, 等. 静电纺丝制备无机纳米纤维及应用进展[J]. 山东纺织科技, 2016,57(1):52-56.
HU Xiaomin, GAO Yang, WU Ning, et al. Preparation and application of inorganic nanofibers by electrospinning[J]. Shandong Textile Science & Technology, 2016,57(1):52-56.
[16] QIN D K, GU A J, LIANG G Z, et al. A facile method to prepare zirconia electrospun fibers with different morphologies and their novel composites based on cyanate ester resin[J]. RSC Aadvances, 2012,2(4):1364-1372.
[17] TUNC T, USLU I. Fabrication and characterization of boron doped yttria-stabilized zirconia nanofibers[J]. Polymer Engineering and Science, 2013,53(5):963-969.
[18] LI L P, ZHANG P G, LIANG J D, et al. Phase transformation and morphological evolution of electrospun zirconia nanofibers during thermal annealing[J]. Ceramics International, 2010,36(2):589-594.
[19] WANG H, DUAN Y K, ZHONG W W. ZrO2 nanofiber as a versatile tool for protein analysis[J]. ACS Applied Materials & Interfaces, 2015,7(48):26414-26420.
doi: 10.1021/acsami.5b09348 pmid: 26571083
[20] YIN L F, NIU J F, SHEN Z Y, et al. Preparation and photocatalytic activity of nanoporous zirconia electrospun fiber mats[J]. Materials Letters, 2011,65(19/20):3131-3133.
[21] RODAEV V V, ZHIGACHEV A O, KORENKOV V V, et al. The influence of zirconia precursor/binding polymer mass ratio in the intermediate electrospun composite fibers on the phase transformation of final zirconia nanofibers[J]. Physica Status Solidi A: Applications and Materials Science, 2016,213(9):2352-2355.
[22] SALIGHEH O, KHAJAVI R, YAZDANSHENAS M E, et al. Fabrication and optimization of poly(vinyl alcohol)/zirconium acetate electrospun nanofibers using taguchi experimental design[J]. Journal of Macromolecular Science Part B:Physics, 2015,54(11):1391-1403.
[23] RODAEV V V, ZHIGACHEV A O, GOLOVIN Y I. Fabrication and characterization of electrospun ZrO2/Al2O3 nanofibers[J]. Ceramics International, 2017,43(17):16023-16026.
[24] WANG H L, MA X K, LI Y A, et al. Synjournal, antimicrobial and release of chloroamphenicol loaded poly(L-lactic acid)/ZrO2 nanofibrous membranes[J]. International Journal of Biological Macromolecules, 2013,62:494-499.
pmid: 24120960
[25] KOO J Y, HWANG S, AHN M, et al. Controlling the diameter of electrospun yttria-stabilized zirconia nanofibers[J]. Journal of the American Ceramic Society, 2016,99(9):3146-3150.
doi: 10.1111/jace.14331
[26] THAKARE V G, JOSHI P A, GODSE R R, et al. Fabrication of polycaprolactone/zirconia nanofiber scaffolds using electrospinning technique[J]. Journal of Polymer Research, 2017. DOI: 10.1007/s10965-017- 1388-z.
doi: 10.34133/2019/2389254 pmid: 31922131
[27] MILSOM B, VIOLA G, GAO Z P, et al. The effect of carbon nanotubes on the sintering behaviour of zirconia[J]. Journal of the European Ceramic Society, 2012,32(16):4149-4156.
doi: 10.1016/j.jeurceramsoc.2012.07.028
[28] NAYEBZADEH H, SAGHATOLESLAMI N, TABASIZADEH M. Application of microwave irradiation for fabrication of sulfated ZrO2-Al2O3 nanocomposite via combustion method for esterification reaction: process condition evaluation[J]. Journal of Nanostructure in Chemistry, 2019,9(2):141-152.
doi: 10.1007/s40097-019-0304-y
[29] 李微, 刘凤华, 吴大旺. 柔性钇稳定氧化锆纳米纤维的制备[J]. 广州化工, 2018,46(10):45-49.
LI Wei, LIU Fenghua, WU Dawang. Preparation of flexible yttria-stabilized zirconia nanofibers[J]. Guangzhou Chemical Industry, 2018,46(10):45-49.
[30] 丁彬, 俞建勇. 静电纺丝与纳米纤维[M]. 北京: 中国纺织出版社, 2011: 50-59.
DING Bin, YU Jianyong. Electrosinning and nano-fibers[M]. Beijing: China Textile & Apparel Press, 2011: 50-59.
[31] SUN Y J, QU J K, GUO Q, et al. Preparation of fine-grained silica-doped zirconia fibers by electrospin-ning[J]. Ceramics International, 2017,43(15):12551-12556.
doi: 10.1016/j.ceramint.2017.06.129
[32] ZHANG H B, EDIRISINGHE M J. Electrospinning zirconia fiber from a suspension[J]. Journal of the American Ceramic Society, 2006,89(6):1870-1875.
doi: 10.1111/jace.2006.89.issue-6
[33] SALIGHEH O, KHAJAVI R, YAZDANSHENAS M E, et al. Production and characterization of zirconia (ZrO2) ceramic nanofibers by using electrospun poly(vinyl alcohol)/zirconium acetate nanofibers as a pre-cursor[J]. Journal of Macromolecular Science Part B:Physics, 2016,55(6):605-616.
doi: 10.1080/00222348.2016.1179165
[34] CASTKOVA K, MACA K, SEKANINOVA J, et al. Electrospinning and thermal treatment of yttria doped zirconia fibres[J]. Ceramics International, 2017,43(10):7581-7587.
doi: 10.1016/j.ceramint.2017.03.050
[35] 毛雪. ZrO2基纳米纤维膜的柔性机制及其应用研究[D]. 上海:东华大学, 2016: 67-71.
MAO Xue. Flexible mechanism of ZrO2 based nanofiberous membranes and their application[D]. Shanghai: Donghua University, 2016: 67-71.
[36] WANG H L, LIN S, YANG S, et al. High-temperature particulate matter filtration with resilient yttria-stabilized ZrO2 nanofiber sponge[J]. Small, 2018. DOI: 10.1002/smll.201800258.
doi: 10.1002/smll.202005728 pmid: 33470521
[37] WANG Y, HAN C, ZHENG D, et al. Large-scale, flexible and high-temperature resistant ZrO2/SiC ultrafine fibers with a radial gradient composition[J]. Journal of Materials Chemistry A, 2014,2(25):9607-9612.
doi: 10.1039/c4ta00347k
[38] CHATTOPADHYAY S, BYSAKH S, SAHA J, et al. Electrospun ZrO2 nanofibers: precursor controlled mesopore ordering and evolution of garland-like nanocrystal arrays[J]. Dalton Transactions, 2018,47(16):5789-5800.
doi: 10.1039/c8dt00415c pmid: 29644370
[39] MAO X, SHAN H R, SONG J, et al. Brittle-flexible-brittle transition in nanocrystalline zirconia nanofibrous membranes[J]. Crystengcomm, 2016,18(7):1139-1146.
doi: 10.1039/C5CE02382C
[40] CHEN Y C, MAO X, SHAN H R, et al. Free-standing zirconia nanofibrous membranes with robust flexibility for corrosive liquid filtration[J]. RSC Advances, 2014,4(6):2756-2763.
doi: 10.1039/c3ra45043k
[41] CHRASKA T, KING A H, BERNDT C C, et al. On the size-dependent phase transformation in nanoparticulate zirconia[J]. Materials Science & Engineering A, 2000,286(1):169-178.
[42] SUN G X, LIU F T, BI J Q, et al. Electrospun zirconia nanofibers and corresponding formation mechanism study[J]. Journal of Alloys and Compounds, 2015,649:788-792.
doi: 10.1016/j.jallcom.2015.03.068
[43] YIN X, XIE X Y, SONG L X, et al. The application of highly flexible ZrO2/C nanofiber films to flexible dye-sensitized solar cells[J]. Journal of Materials Science, 2017,52(18):11025-11035.
doi: 10.1007/s10853-017-1287-z
[44] YIN X, XIE X Y, SONG L X, et al. Enhanced performance of flexible dye-sensitized solar cells using flexible Ag@ZrO2/C nanofiber film as low-cost counter electrode[J]. Applied Surface Science, 2018,440:992-1000.
doi: 10.1016/j.apsusc.2018.01.264
[45] GAZQUEZ G C, CHEN H L, VELDHUIS S A, et al. Flexible yttrium-stabilized zirconia nanofibers offer bioactive cues for osteogenic differentiation of human mesenchymal stromal cells[J]. ACS Nano, 2016,10(6):5789-5799.
pmid: 27294434
[46] GUO G Q, FAN Y W, ZHANG J F, et al. Novel dental composites reinforced with zirconia-silica ceramic nanofibers[J]. Dental Materials, 2012,28(4):360-368.
doi: 10.1016/j.dental.2011.11.006 pmid: 22153326
[47] MAO X, BAI Y, YU J Y, et al. Insights into the flexibility of ZrMxOy (M=Na, Mg, Al) nanofibrous membranes as promising infrared stealth materials[J]. Dalton Transactions, 2016,45(15):6660-6666.
doi: 10.1039/c6dt00319b pmid: 26974663
[48] LIU X F, LAI Y K, HUANG J Y, et al. Hierarchical SiO2@Bi2O3 core/shell electrospun fibers for infrared stealth camouflage[J]. Journal of Materials Chemistry C, 2015,3(2):345-351.
doi: 10.1039/C4TC01873G
[49] ZHANG X S, XU D, ZHOU G J, et al. Color tunable up-conversion emission from ZrO2: Er3+,Yb3+ textile fibers[J]. RSC Advances, 2016,6(106):103973-103980.
doi: 10.1039/C6RA20388D
[1] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[2] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[3] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[4] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[5] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan / polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[6] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride / FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[7] WANG Liyuan, KANG Weimin, ZHUANG Xupin, JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[8] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[9] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[10] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[11] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[12] DUAN Hongmei, WANG Ximing, HUANG Zixin, GAO Jing, WANG Lu. Construction and drug release properties of fiber-based mesoporous SiO2 drug carrier [J]. Journal of Textile Research, 2020, 41(07): 15-22.
[13] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[14] HAO Zhifen, XU Naiku, FENG Yan, DUAN Mengxin, XIAO Changfa. Preparation of fibrous membrane by blending polymethacrylate with polyacrylate and its oil / water separation property [J]. Journal of Textile Research, 2020, 41(06): 21-26.
[15] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!