Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (07): 1-8.doi: 10.13475/j.fzxb.20190900108
• Fiber Materials • Next Articles
YUAN Wei1, YAO Yongbo2, ZHANG Yumei1(), WANG Huaping1
CLC Number:
[1] |
WOODINGS C R. The development of advanced cellulosic fibres[J]. International Journal of Biological Macromolecules, 1995,17(6):305-309.
doi: 10.1016/0141-8130(96)81836-8 pmid: 8789330 |
[2] |
KLEMM D, HEUBLEIN B, FINK H P, et al. Cellulose: fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition, 2005,44:3358-3393.
doi: 10.1002/anie.200460587 pmid: 15861454 |
[3] |
FINK H P, GANSTER J, LEHMANN A. Progress in cellulose shaping: 20 years industrial case studies at fraunhofer iap[J]. Cellulose, 2014,21(1):31-51.
doi: 10.1007/s10570-013-0137-7 |
[4] | STRUNK P, LINDGREN A, ELIASSON B, et al. Chemical changes of cellulose pulp in the processing to viscose dope[J]. Cellulose Chemistry and Technology, 2012,46(9/10):559-569. |
[5] | PEREPELKIN K E. Lyocell fibres based on direct dissolution of cellulose in N-methylmorpholine N-oxide: development and prospects[J]. Fibre Chemistry, 2007,39(2):163-172. |
[6] | ZHANG S, CHEN C, DUAN C, et al. Regenerated cellulose by the lyocell process, a brief review of the process and properties[J]. Bioresources, 2018,13(2):1-16. |
[7] | DONG B K, JAMES J P, SEONG M J, et al. Dry jet-wet spinning of cellulose/N-methylmorpholine N-oxide hydrate, solutions and physical properties of Lyocell fibers[J]. Textile Research Journal, 2005,75(4):331-341. |
[8] | CYRIL C, PATRICK N. Swelling and dissolution mechanisms of regenerated Lyocell cellulose fibers[J]. Cellulose, 2011,18(1):1-15. |
[9] | CHANZY H, PAILLET M, HAGEGE R. Spinning of cellulose from N-methyl morpholine N-oxide in the presence of additives[J]. Polymer, 1990,31(3):400-405. |
[10] |
MI K Y, MOHAMMAD S R, IK M K, et al. Physical properties and fibrillation tendency of regenerated cellulose fiber dry jet-wet spun from high-molecular weight cotton linter pulp/NMMO solution[J]. Fibers and Polymers, 2015,16(8):1618-1628.
doi: 10.1007/s12221-015-5313-y |
[11] | KYOUNG H C, AH R K, BYOUNG U C. Effects of alkali swelling and beating treatments on properties of kraft pulp fibers[J]. BioResources, 2016,11(2):3769-3782. |
[12] |
HELENA H, PER A. Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material[J]. Cellulose, 2005,12(2):177-183.
doi: 10.1007/s10570-004-1038-6 |
[13] | SCHLEICHER H, DANIELS C, PHILIPP B. Changes of cellulose accessibility to reactions in alkaline medium by activation with ammonia[J]. Journal of Polymer Science Polymer Symposia, 1974,47(1):251-260. |
[14] | TAKASHI Y, TOSHIHIKO M, MASAYOSHI S, et al. Characterisation of cellulose treated by the steam explosion method: part 1: influence of cellulose resources on changes in morphology, degree of polymerisation, solubility and solid structure[J]. British Polymer Journal, 1990,22(1):73-83. |
[15] | TIAN C, ZHENG L, MIAO Q, et al. Improving the reactivity of kraft-based dissolving pulp for viscose rayon production by mechanical treatments[J]. Cellulose, 2014,21(5):3647-3654. |
[16] | GAO P. Research progress in the mechanism of cellulase degradation and the molecular structure and function of cellulase[J]. Progress in Natural Science, 2003,13(1):21-29. |
[17] |
ANN C E, MONICA E, GUNNAR H. Improved accessibility and reactivity of dissolving pulp for the viscose process: pretreatment with monocomponent endoglucanase[J]. Biomacromolecules, 2006,7(6):2027-2031.
pmid: 16768429 |
[18] |
GUNNAR H, MARIA C, ROLAND A. Monocomponent endoglucanase treatment increases the reactivity of softwood sulphite dissolving pulp[J]. Journal of Industrial Microbiology and Biotechnology, 2005,32(5):211-214.
doi: 10.1007/s10295-005-0220-7 pmid: 15871037 |
[19] |
MIAO Q, CHEN L, HUANG L, et al. A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment[J]. Bioresource Technology, 2014,154:109-113.
pmid: 24384317 |
[20] |
MIAO Q, TIAN C, CHEN L, et al. Combined mechanical and enzymatic treatments for improving the fock reactivity of hardwood kraft-based dissolving pulp[J]. Cellulose, 2015,22(1):803-809.
doi: 10.1007/s10570-014-0495-9 |
[21] |
DUAN C, VERMA S K, LI J, et al. Viscosity control and reactivity improvements of cellulose fibers by cellulase treatment[J]. Cellulose, 2016,23(1):269-276.
doi: 10.1007/s10570-015-0822-9 |
[22] | VIRTANEN T, PENTTILÄ P A, MALONEY T C, et al. Impact of mechanical and enzymatic pretreatments on softwood pulp fiber wall structure studied with NMR spectroscopy and X-ray scattering[J]. Cellulose, 2015,22(3):1565-1576. |
[23] | GRÖNQVIST S, HAKALA T K, KAMPPURI T, et al. Fibre porosity development of dissolving pulp during mechanical and enzymatic processing[J]. Cellulose, 2014,21(5):3667-3676. |
[24] |
WANG Q, LIU S, YANG G, et al. High consistency cellulase treatment of hardwood prehydrolysis kraft based dissolving pulp[J]. Bioresource Technology, 2015,189:413-416.
doi: 10.1016/j.biortech.2015.04.069 pmid: 25934579 |
[25] | SANGO C, KAUR P, BHARDWAJ N K, et al. Bacterial cellulase treatment for enhancing reactivity of pre-hydrolysed kraft dissolving pulp for viscose[J]. Biotech, 2018,8:271. |
[26] | CHIRIAC A I, PASTOR F I J, POPA V I, et al. Changes of supramolecular cellulose structure and accessibility induced by the processive endoglucanase cel9b from paenibacillus barcinonensis[J]. Cellulose, 2014,21(1):203-219. |
[27] | YANG T, WEN W, YIN G, et al. Introduction of the X-ray diffraction beamline of SSRF[J]. Nuclear Science and Techniques, 2015,26(2):020101. |
[28] | YU J, CHEN K, LI X, et al. Performance and structure changes of the aromatic co-polysulfonamide fibers during thermal-oxidative aging process[J]. Journal of Applied Polymer Science, 2016,133(41):44078. |
[29] | PANDEY K K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy[J]. Journal of Applied Polymer Science, 1999,71:1969-1975. |
[30] | BERTRAN S M, BRUCE E D. Determination of cellulose accessibility by differential scanning calorimetry[J]. Journal of Applied Polymer Science, 1986,32(3):4241-4253. |
[31] |
NEWMAN R H. Carbon-13 -NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp[J]. Cellulose, 2004,11(1):45-52.
doi: 10.1023/B:CELL.0000014768.28924.0c |
[1] | . Preparation of phase change Lyocell fiber and influence of microcapsule on solvent recovery [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 1-5. |
[2] | . Status and development research of Lyocell fiber at home and abroad [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(04): 164-170. |
[3] | . Preparation and properties of carbon black/Lyocell cellulose membrane [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 28-32. |
[4] | . Preparation of 4-Methylmopholine N-oxide based ultrafine carbon black [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 75-79. |
[5] | . Biodegradability of cellulose fibers [J]. Journal of Textile Research, 2015, 36(11): 20-26. |
[6] | WANG Jun;WANG Rongwu;WU Xiongying;;XIE Huosheng. Characteristic differences of Lyocell fiber longitudinal image in different textiles [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(5): 19-23. |
[7] | 东华大学纤维材料改性国家重点实验室. Effect of super-high molecular weight cellulose on the spinning properties of Lyocell [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(9): 5-9. |
[8] | ZHU Mei;WANG Hong-bo. Surface modification of acetate fiber for cigarette filter initiated by plasma and cellulase [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(8): 25-28. |
[9] | ZHU Jun;ZHANG Hong-mei. Processing knitting yarn of Lyocell fiber with rotor spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(4): 87-90. |
|