Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (07): 1-8.doi: 10.13475/j.fzxb.20190900108

• Fiber Materials •     Next Articles

Alkaline enzyme treatment process for preparation of Lyocell cellulose pulp

YUAN Wei1, YAO Yongbo2, ZHANG Yumei1(), WANG Huaping1   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
  • Received:2019-09-02 Revised:2020-03-04 Online:2020-07-15 Published:2020-07-23
  • Contact: ZHANG Yumei E-mail:zhangym@dhu.edu.cn

Abstract:

In order to improve the dissolving efficiency and solution stability of cellulose during the preparation of Lyocell fiber, the alkaline enzyme treatment time and dosage with cellulose pulp were experimented on, and the changes of relative molecular weight and accessible properties of the pulp were studied. The results show that after enzyme treatment, the crystalline form of cellulose is not destroyed, remaining to be a typical cellulose I-type conformation. When the enzyme dosage is set to 4 000 mL/t and the enzyme treatment time increases, the polymerization degree decreases to 430 and tends to be stable, as the enzyme treatment time is more than 60 min. When the enzyme treatment time is set to 60 min and the enzyme dosage increased to 2 000 mL/t, the polymerization degree of cellulose pulp reduces from 520 to about 430, and the relative molecular weight distribution reduces. It is found that the accessible surface area of cellulase pulp treated by cellulose increases, but the crystal structure remains the same. Cellulose mainly acts on the amorphous area in cellulose molecules and the poorly ordered part of crystalline surface.

Key words: cellulase enzyme, cellulose pulp, Lyocell fiber, alkaline enzyme, relative molecular weight distribution, crystal structure

CLC Number: 

  • TQ341.5

Fig.1

Effect of enzyme treatment time(a)and dosage(b)on moisture regain of cellulose pulp"

Fig.2

Effect of enzyme treatment time(a) and dosage(b)on water content of cellulose pulp"

Fig.3

FT-IR spectra of cellulose pulp treated with enzymes at different time(a)and dosage(b)"

Tab.1

Effect of enzyme treatment time on dehydration enthalpy of pulp"

酶处理时间/min 热焓值/ (J·g-1)
0 123.0
15 128.1
30 132.3
45 132.4
60 133.4
90 133.6
120 133.7

Fig.4

Effect of with enzyme dosage (a) and treatment time (b) on polymerization degree of cellulose pulp"

Tab.2

Effect of enzyme treatment time on reducing sugar content of cellulose pulp"

酶处理时间/min 还原糖质量分数/%
15 0.39
30 0.50
45 0.60
60 0.62
90 0.61
120 0.62

Fig.5

Effect of enzyme dosage on molecular weight distribution of pulp"

Tab.3

Effect of enzymes with different dosage on molecular weight of cellulose pulp"

酶用量/
(mL·t-1)
平均数均
分子量/104
平均重均
分子量/105
PDI
0 3.30 1.47 4.47
500 3.28 1.16 3.52
1 000 3.24 1.13 3.49
2 000 3.17 1.06 3.36
4 000 3.38 1.07 3.18

Tab.4

Changes of crystalline spacing and crystallinity of cellulose pulp after enzymatic treatment at different time"

酶处理
时间/min
晶面间距/nm 结晶度/
%
(11ˉ0) (110) (012) (020) (103) (004)
0 0.588 0.537 0.433 0.393 0.318 0.260 81
15 0.589 0.538 0.432 0.393 0.318 0.260 79
30 0.591 0.536 0.433 0.393 0.318 0.260 80
45 0.587 0.537 0.432 0.393 0.318 0.260 80
60 0.589 0.535 0.433 0.393 0.319 0.260 79
90 0.589 0.537 0.432 0.394 0.319 0.260 81
120 0.587 0.538 0.431 0.393 0.319 0.260 81

Tab.5

Changes of crystal plane spacing and crystallinity of cellulose pulp after enzymatic action at different dosage"

酶用量/
(mL·t-1)
晶面间距/nm 结晶度/
%
(11ˉ0) (110) (012) (020) (103) (004)
0 0.588 0.537 0.433 0.393 0.318 0.260 81
500 0.588 0.537 0.433 0.393 0.319 0.260 79
1 000 0.587 0.537 0.433 0.393 0.318 0.260 80
2 000 0.586 0.536 0.433 0.393 0.318 0.260 80
4 000 0.589 0.537 0.432 0.393 0.319 0.260 79

Fig.6

Solid state NMR of cellulose pulp treated with enzyme at different dosage(a)and time(b)"

Tab.6

Effect of proporation of crystalline regions in cellulose pulp at different enzyme dosage"

酶用量/
(mL·t-1)
占比/%
结晶表面较好
有序结构
表面较差有序
以及无序结构
结晶内部有序
结构
0 9.6 26.0 64.4
500 10.1 25.3 64.6
1 000 10.2 23.6 66.2
2 000 10.5 22.7 66.8
4 000 11.4 22.0 66.6

Tab.7

Effect of proporation of crystalline regions in cellulose pulp at different enzyme treatment time"

酶处理
时间/min
占比/%
结晶表面较好
有序结构
表面较差有序
以及无序结构
结晶内部
有序结构
0 9.6 26.0 64.4
15 9.8 24.9 65.3
30 10.4 24.0 65.6
45 10.7 23.0 66.3
60 11.7 21.9 66.4
90 12.0 21.7 66.3
120 11.8 21.8 66.4
[1] WOODINGS C R. The development of advanced cellulosic fibres[J]. International Journal of Biological Macromolecules, 1995,17(6):305-309.
doi: 10.1016/0141-8130(96)81836-8 pmid: 8789330
[2] KLEMM D, HEUBLEIN B, FINK H P, et al. Cellulose: fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition, 2005,44:3358-3393.
doi: 10.1002/anie.200460587 pmid: 15861454
[3] FINK H P, GANSTER J, LEHMANN A. Progress in cellulose shaping: 20 years industrial case studies at fraunhofer iap[J]. Cellulose, 2014,21(1):31-51.
doi: 10.1007/s10570-013-0137-7
[4] STRUNK P, LINDGREN A, ELIASSON B, et al. Chemical changes of cellulose pulp in the processing to viscose dope[J]. Cellulose Chemistry and Technology, 2012,46(9/10):559-569.
[5] PEREPELKIN K E. Lyocell fibres based on direct dissolution of cellulose in N-methylmorpholine N-oxide: development and prospects[J]. Fibre Chemistry, 2007,39(2):163-172.
[6] ZHANG S, CHEN C, DUAN C, et al. Regenerated cellulose by the lyocell process, a brief review of the process and properties[J]. Bioresources, 2018,13(2):1-16.
[7] DONG B K, JAMES J P, SEONG M J, et al. Dry jet-wet spinning of cellulose/N-methylmorpholine N-oxide hydrate, solutions and physical properties of Lyocell fibers[J]. Textile Research Journal, 2005,75(4):331-341.
[8] CYRIL C, PATRICK N. Swelling and dissolution mechanisms of regenerated Lyocell cellulose fibers[J]. Cellulose, 2011,18(1):1-15.
[9] CHANZY H, PAILLET M, HAGEGE R. Spinning of cellulose from N-methyl morpholine N-oxide in the presence of additives[J]. Polymer, 1990,31(3):400-405.
[10] MI K Y, MOHAMMAD S R, IK M K, et al. Physical properties and fibrillation tendency of regenerated cellulose fiber dry jet-wet spun from high-molecular weight cotton linter pulp/NMMO solution[J]. Fibers and Polymers, 2015,16(8):1618-1628.
doi: 10.1007/s12221-015-5313-y
[11] KYOUNG H C, AH R K, BYOUNG U C. Effects of alkali swelling and beating treatments on properties of kraft pulp fibers[J]. BioResources, 2016,11(2):3769-3782.
[12] HELENA H, PER A. Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material[J]. Cellulose, 2005,12(2):177-183.
doi: 10.1007/s10570-004-1038-6
[13] SCHLEICHER H, DANIELS C, PHILIPP B. Changes of cellulose accessibility to reactions in alkaline medium by activation with ammonia[J]. Journal of Polymer Science Polymer Symposia, 1974,47(1):251-260.
[14] TAKASHI Y, TOSHIHIKO M, MASAYOSHI S, et al. Characterisation of cellulose treated by the steam explosion method: part 1: influence of cellulose resources on changes in morphology, degree of polymerisation, solubility and solid structure[J]. British Polymer Journal, 1990,22(1):73-83.
[15] TIAN C, ZHENG L, MIAO Q, et al. Improving the reactivity of kraft-based dissolving pulp for viscose rayon production by mechanical treatments[J]. Cellulose, 2014,21(5):3647-3654.
[16] GAO P. Research progress in the mechanism of cellulase degradation and the molecular structure and function of cellulase[J]. Progress in Natural Science, 2003,13(1):21-29.
[17] ANN C E, MONICA E, GUNNAR H. Improved accessibility and reactivity of dissolving pulp for the viscose process: pretreatment with monocomponent endoglucanase[J]. Biomacromolecules, 2006,7(6):2027-2031.
pmid: 16768429
[18] GUNNAR H, MARIA C, ROLAND A. Monocomponent endoglucanase treatment increases the reactivity of softwood sulphite dissolving pulp[J]. Journal of Industrial Microbiology and Biotechnology, 2005,32(5):211-214.
doi: 10.1007/s10295-005-0220-7 pmid: 15871037
[19] MIAO Q, CHEN L, HUANG L, et al. A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment[J]. Bioresource Technology, 2014,154:109-113.
pmid: 24384317
[20] MIAO Q, TIAN C, CHEN L, et al. Combined mechanical and enzymatic treatments for improving the fock reactivity of hardwood kraft-based dissolving pulp[J]. Cellulose, 2015,22(1):803-809.
doi: 10.1007/s10570-014-0495-9
[21] DUAN C, VERMA S K, LI J, et al. Viscosity control and reactivity improvements of cellulose fibers by cellulase treatment[J]. Cellulose, 2016,23(1):269-276.
doi: 10.1007/s10570-015-0822-9
[22] VIRTANEN T, PENTTILÄ P A, MALONEY T C, et al. Impact of mechanical and enzymatic pretreatments on softwood pulp fiber wall structure studied with NMR spectroscopy and X-ray scattering[J]. Cellulose, 2015,22(3):1565-1576.
[23] GRÖNQVIST S, HAKALA T K, KAMPPURI T, et al. Fibre porosity development of dissolving pulp during mechanical and enzymatic processing[J]. Cellulose, 2014,21(5):3667-3676.
[24] WANG Q, LIU S, YANG G, et al. High consistency cellulase treatment of hardwood prehydrolysis kraft based dissolving pulp[J]. Bioresource Technology, 2015,189:413-416.
doi: 10.1016/j.biortech.2015.04.069 pmid: 25934579
[25] SANGO C, KAUR P, BHARDWAJ N K, et al. Bacterial cellulase treatment for enhancing reactivity of pre-hydrolysed kraft dissolving pulp for viscose[J]. Biotech, 2018,8:271.
[26] CHIRIAC A I, PASTOR F I J, POPA V I, et al. Changes of supramolecular cellulose structure and accessibility induced by the processive endoglucanase cel9b from paenibacillus barcinonensis[J]. Cellulose, 2014,21(1):203-219.
[27] YANG T, WEN W, YIN G, et al. Introduction of the X-ray diffraction beamline of SSRF[J]. Nuclear Science and Techniques, 2015,26(2):020101.
[28] YU J, CHEN K, LI X, et al. Performance and structure changes of the aromatic co-polysulfonamide fibers during thermal-oxidative aging process[J]. Journal of Applied Polymer Science, 2016,133(41):44078.
[29] PANDEY K K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy[J]. Journal of Applied Polymer Science, 1999,71:1969-1975.
[30] BERTRAN S M, BRUCE E D. Determination of cellulose accessibility by differential scanning calorimetry[J]. Journal of Applied Polymer Science, 1986,32(3):4241-4253.
[31] NEWMAN R H. Carbon-13 -NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp[J]. Cellulose, 2004,11(1):45-52.
doi: 10.1023/B:CELL.0000014768.28924.0c
[1] . Preparation of phase change Lyocell fiber and influence of microcapsule on solvent recovery [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 1-5.
[2] . Status and development research of Lyocell fiber at home and abroad [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(04): 164-170.
[3] . Preparation and properties of carbon black/Lyocell cellulose membrane [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 28-32.
[4] . Preparation of 4-Methylmopholine N-oxide based ultrafine carbon black  [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 75-79.
[5] . Biodegradability of cellulose fibers [J]. Journal of Textile Research, 2015, 36(11): 20-26.
[6] WANG Jun;WANG Rongwu;WU Xiongying;;XIE Huosheng. Characteristic differences of Lyocell fiber longitudinal image in different textiles [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(5): 19-23.
[7] 东华大学纤维材料改性国家重点实验室. Effect of super-high molecular weight cellulose on the spinning properties of Lyocell [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(9): 5-9.
[8] ZHU Mei;WANG Hong-bo. Surface modification of acetate fiber for cigarette filter initiated by plasma and cellulase [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(8): 25-28.
[9] ZHU Jun;ZHANG Hong-mei. Processing knitting yarn of Lyocell fiber with rotor spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(4): 87-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!