Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (09): 119-127.doi: 10.13475/j.fzxb.20190901509

• Apparel Engineering • Previous Articles     Next Articles

Design and ergonomic evaluation of flexible rehabilitation gloves

SHEN Jinzhu1, ZHAO Xiaolu1, ZHANG Fan2, YU Qing3, SU Junqiang1,4()   

  1. 1. School of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Suzhou Rouchu Robot Science and Technology Co., Ltd., Zhangjiagang, Jiangsu 215600, China
    3. Jiangyin Industry Management Center, Jiangyin, Jiangsu 214400, China
    4. Textile and Apparel Engineering Research Center of Fujian Province, Minjiang University, Fuzhou, Fujian 350108, China
  • Received:2019-09-03 Revised:2020-05-27 Online:2020-09-15 Published:2020-09-25
  • Contact: SU Junqiang E-mail:jqsu@jiangnan.edu.cn

Abstract:

In order to improve the comfort of flexible rehabilitation gloves and speed up the rehabilitation process, a clinical investigation on the comfort of flexible rehabilitation gloves was carried out. Four design elements, i.e. functionality, fabric construction, structural paraameters and visual perception, were realized affecting the comfort of the gloves. On this basis, an improved rehabilitation glove was developed with three types of soft robotic fingers were used for evaluation. On this platform, objective evaluations were carried out for finger bending strength, friction coefficient between fabric and skin, air permeability and moisture permeability of fabric. In parallel, two subjective evaluation experiments of contact comfort and structural ergonomics of glove fabric were carried out. It was found that the suitable working pressure of the rehabilitation glove ranges from 40 to 120 kPa. When the gloves were pressurized with 40 kPa, the maximum compression on the thumb, the little finger and the other fingers was 2.94 N, 1.77 N and 1.96 N, respectively, demonstrating a preliminary rehabilitation effect. Furthermore, the fabric contact comfort score was 6.63, which shows that the gloves were comfortable to wear. The gloves were found convenient to wear, not limiting the normal functions of fingers.

Key words: flexible fingers, hand rehabilitation, rehabilitation gloves, ergonomic evaluation, soft robot

CLC Number: 

  • TS941.26

Fig.1

Soft finger robot of company A"

Fig.2

Bending actions of soft finger robot"

Fig.3

Gloves No. 0"

Tab.1

Three kinds of selected soft finger parameters for flexible rehabilitation robot gloves"

手指
型号
D/
mm
指尖行程/mm 手指长
Lf/mm
指纹长
L/mm
W/mm 质量/g
外伸变形量
Hmin
内缩变形量
Hmax
A6 28 35 50 83 111 24 45.0
A9 28 45 70 125 153 24 60.0
B8 21 50 60 84 104 18 21.5

Fig.4

Schematic diagram of soft finger robot parameters. (a) Motion distance; (b) Length and height; (c) Width"

Fig.5

Flexible rehabilitation robot glove. (a) Front; (b) Back"

Fig.6

Rehabilitaiton gloves design flow"

Tab.2

Fabric selection scheme of flexible rehabilitation robot gloves of company A"

用途 面料名称 面料类型 面料材质 面料性能 颜色
接触手背手掌部分皮肤 经编网眼布料 针织 涤纶 布面结构较稀松,透气性好 灰色
接触手背手指部分皮肤 空气层四面弹力面料 针织 锦纶+氨纶 四面弹力,透气透汗,绵软滑腻 灰色
包覆柔性手指 超高弹力面料 针织 82%锦纶+18%氨纶 质地轻薄光滑,具备良好弹性 白色
覆盖气管 绒面潜水布料 针织 绒布+丁苯橡胶(SBR)+涤纶布 可直接黏贴魔术贴,具塑形功能 黑色

Fig.7

Schematic diagram of finger bending force of gloves"

Tab.3

Variation o bending force of glove finger with the stroke of fingertips"

A6手指 A9手指 B8手指
气压/
kPa
行程/
mm
手指弯曲力度/
N
气压/
kPa
行程/
mm
手指弯曲力度/
N
气压/
kPa
行程/
mm
手指弯曲力度/
N
40 -14 0 40 -31 0 40 -24 0
0 0.69 0 0.82 0 0.39
33 2.94 45 1.96 47 1.77
80 -31 0 80 -56 0 80 -46 0
0 1.73 0 1.65 0 0.86
33 4.12 45 3.18 47 2.52
120 -46 0 120 -70 0 120 -58 0
0 2.87 0 2.57 0 1.43
33 6.07 45 4.76 47 2.94

Tab.4

Properties of fabric of gloves touching hands"

面料 面密度/
(g·m-2)
厚度/
mm
透气率/
(mm·s-1)
回潮率/
%
透湿率/
(g·(m2·24 h)-1)
硬挺度/
cm
动摩擦
因数
静摩擦
因数
经编网眼面料 74 0.29 632.48 0.44 10 035.47 3.0 1.001 1.060
空气层四面弹力面料 210 0.96 126.33 4.38 5 580.32 2.5 1.016 1.103

Fig.8

Evaluation scale of fabric overall contact comfort"

Tab.5

Contact comfort evaluation results of gloves at each stage of experiment"

实验阶段 评价项目 编号 平均得分 评价结果
第1阶段 冷暖感 1 5.07 温度适中
刺扎感 2 2.17 略微刺扎
粗糙感 3 2.40 略微粗糙
第2阶段 刚硬感 4 3.07 较为柔软
静电感 5 0.30 无电感
滑腻感 6 5.15 略微滑腻
紧贴感 7 5.13 中等紧贴
刮擦感 8 3.75 略微滑腻
局部压迫感 9 2.75 轻微压感
第3阶段 接触黏附感 10 2.67 轻微黏附
湿冷感 11 4.35 中等冷
总体舒适感 12 6.67 适度舒适

Tab.6

Experimental evaluation results of structure and efficiency of gloves at each stage of experiment"

实验阶段 评价项目 编号 平均得分 评价结果
第1阶段 穿戴困难度 1# 3.04 较为容易
手指合体性 2# 5.98 一般合体
手掌合体性 3# 7.03 较为合体
手腕合体性 4# 7.48 较为合体
第2阶段 整体合体性 5# 7.42 较为合体
手指合体性 6# 6.72 较为合体
手掌合体性 7# 7.23 较为合体
手腕合体性 8# 7.48 较为合体
手套轻重感 9# 5.83 一般轻重
手套压迫感 10# 4.94 一般压迫
手指酸胀感 11# 2.94 轻微酸胀
第3阶段 视觉舒适性 12# 5.31 一般舒适

Fig.9

Average evaluation results of fabric contact evaluation. (a) Fabric contact evaluation; (b) Structural ergonomics evaluation"

[1] 孙中圣, 郭钟华, 唐威. 基于加箍型柔性气动驱动器的可穿戴式手部康复手套设计[J]. 中南大学学报(英文版), 2019, 26(1):106-119.
SUN Zhongsheng, GUO Zhonghua, TANG Wei. Design of wearable hand rehabilitation glove with soft hoop-reinforced pneumatic actuator[J]. Journal of Central South University (English Edition), 2019, 26(1):106-119.
[2] 李鹏杰. 基于虚拟现实的手指康复训练系统研究[D]. 洛阳:河南科技大学, 2017:11-56.
LI Pengjie. Research on finger rehabilitation training system based on virtual reality[D]. Luoyang: Henan University of Science and Technology, 2017:11-56.
[3] BROKAW E B, BLACK I, HOLLEY R J, et al. Hand spring operated movement enhancer (handsome): a portable, passive hand exoskeleton for stroke rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19(4):391-399.
pmid: 21622079
[4] 徐丰羽, 孟凡昌, 范保杰, 等. 软体机器人驱动、建模与应用研究综述[J]. 南京邮电大学学报(自然科学版), 2019, 39(3):64-75.
XU Fengyu, MENG Fanchang, FAN Baojie, et al. Review of driving methods, modeling and application in soft robots[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 2019, 39(3):64-75.
[5] POLYGERINOS P, WANG Z, GALLOWAY K, et al. Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robotics and Autonomous Systems, 2015, 73(C):135-143.
[6] SARAC M, SOLAZZI M, FRISOLI A. Design requirements of generic hand exoskeletons and survey of hand exoskeletons for rehabilitation, assistive, or haptic use[J]. IEEE Transactions on Haptics, 2019, 12(4):400-413.
pmid: 31251193
[7] RADDER B, PRANGE-LASONDEr G B, KOTTINK A I R, et al. Home rehabilitation supported by a wearable soft-robotic device for improving hand function in older adults: a pilot randomized controlled trial[J]. Plots One, 2019, 14(8):e0220544.
[8] RUS D, TOLLEY M T. Design fabrication and control of soft robots[J]. Nature, 2015, 521(7553):467-75
pmid: 26017446
[9] 张晓会, 马丕波, 缪旭红. 针织结构在医用纺织品领域的应用[J]. 纺织科学与工程学报, 2018, 35(1):164-170.
ZHANG Xiaohui, MA Pibo, MIAO Xuhong. Application of knitted structure textile in medical area[J]. Journal of Textile Science and Engineering, 2018, 35(1):164-170.
[10] MACHADO M, SALGADO T M, HADGRAFT J, et al. The relationship between transepidermal water loss and skin permeability[J]. International Journal of Pharmaceutics, 2010, 384(1/2):73-77.
doi: 10.1016/j.ijpharm.2009.09.044
[11] 杜保印. 止血带压力与收缩压关系对血流动力学和代谢及再灌注损伤的影响[D]. 济南:济南大学, 2015:1-19.
DU Baoyin. Ourniquet on hemodynamic and metabolic relation between pressure and systolic blood pressure and the influence of reperfusion[D]. Jinan: University of Jinan, 2015:1-19.
[12] 王雪垠. 色彩在医疗产品设计中的应用[C]// 解基程.2014(淄博)医疗、环保及其相关产业设计创新国际论坛论文集.天津:天津工业大学, 2014:123-126.
WANG Xueyin. Color application in the medical product design[C]// XIE Jicheng.2014(Zibo) Medical、Environmental Protection and Relevant Industry Design Innovation International Forum. Tianjin: Tiangong University, 2014:123-126.
[13] 王璐, 关国平, 王富军, 等. 生物医用纺织材料及其器件研究进展[J]. 纺织学报, 2016, 37(2):133-140.
WANG Lu, GUAN Guoping, WANG Fujun, et al. Research progress on biomedical textile materials anddevices[J]. Journal of Textile Research, 2016, 37(2):133-140.
[14] 熊雪姣. 色彩在医院室内环境设计中的运用研究[J]. 文化创新比较究, 2018, 2(24):61-63.
XIONG Xuejiao. The application of color in hospital interior environment design[J]. Comparative Study of Cultural Innovation, 2018, 2(24):61-63.
[15] 张苏道, 薛文良, 魏孟媛, 等. 眼动仪在服装面料色彩视觉评价中的应用[J]. 纺织学报, 2019, 40(3):139-145.
ZHANG Sudao, XUE Wenliang, WEI Mengyuan, et al. Application of eye tracker in visual evaluation of apparel fabric colors[J]. Journal of Textile Research, 2019, 40(3):139-145.
[16] 孙菲菲, 徐平华, 丁雪梅, 等. 服饰设计视觉显著性检测[J]. 纺织学报, 2018, 39(3):126-131.
SUN Feifei, XU Pinghua, DING Xuemei, et al. Visual saliency detection of clothing and accessory design[J]. Journal of Textile Research, 2018, 39(3):126-131.
[1] ZHANG Aidan, ZHOU Jiu. Color rendering characteristics of fabric structure based on halftone design of image color [J]. Journal of Textile Research, 2019, 40(09): 56-61.
[2] GU Bingfei, YAN Yanhong, SU Junqiang, LIU Guolian. Ease distribution rules of characteristic positions in women's suits [J]. Journal of Textile Research, 2019, 40(05): 107-112.
[3] ZHANG Aidan, ZHOU Jiu. Design principle and method of texture effect in jacquard fabric based on full-color compound structure [J]. Journal of Textile Research, 2019, 40(05): 36-40.
[4] WU Huan, DING Xiaojun, LI Qinman, DU Lei, ZOU Fengyuan. Classification of women’s trousers silhouette using convolution neural network CaffeNet model [J]. Journal of Textile Research, 2019, 40(04): 117-121.
[5] BAO Chen, MIAO Yongwei, SUN Yuliang, ZHANG Xudong. Automatic measurement of three-dimensional human body based on scattered point cloud [J]. Journal of Textile Research, 2019, 40(01): 120-129.
[6] . Design principle and method of jacquard pattern based on layered-combination design mode [J]. Journal of Textile Research, 2015, 36(06): 37-41.
[7] . Data simplification and hole-filling of body scan line point clouds [J]. Journal of Textile Research, 2015, 36(03): 110-114.
[8] . Forming principle and computer-aided design of warp knitted seamless fabric [J]. Journal of Textile Research, 2015, 36(02): 55-60.
[9] . Study on virtual simulation of 2-D patterns [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(10): 141-0.
[10] . Fashion geometric printing pattern designing based on mathematical method [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(3): 141-0.
[11] . Visualization simulation technolohy of cloth deformation based on mass-spring model and its prospect [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(3): 147-153.
[12] TANG Ying;FANG Kuanjun;FU Shaohai;TIAN Anli;ZHANG Lianbing. Computer Simulation Research on Batik Crack Patterns [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(3): 128-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!