Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (09): 54-58.doi: 10.13475/j.fzxb.20190903505
• Textile Engineering • Previous Articles Next Articles
JIN Yao1,2, CAI Tenghao1, LI Caiman1, HU Yali3, LU Jialiang4, WANG Yi5()
CLC Number:
[1] | KAPLAN Craig S. Introductory tiling theory for computer graphics[J]. Synjournal Lectures on Computer Graphics and Animation, 2009,4(1):113. |
[2] |
LU Peter J, STEINHARDT Paul J. Decagonal and quasi-crystalline tilings in medieval Islamic architec-ture[J]. Science, 2007,315(5815):1106-1110.
pmid: 17322056 |
[3] | CHUNG K W, CHAN H S Y, WANG B N. Automatic generation of nonperiodic patterns from dynamical systems[J]. Chaos, Solitons and Fractals, 2004,19(5):1177-1187. |
[4] |
OUYANG Peichang, FATHAUER Robert W. Beautiful math:part 2: aesthetic patterns based on fractal tilings[J]. IEEE Computer Graphics and Applications, 2014,34(1):68-76.
doi: 10.1109/MCG.2014.6 pmid: 24808170 |
[5] |
JOSÉ Ezequiel Soto Sánchez, ASLA Medeiros e Sá, LUIZ Henrique de Figueiredo. Acquiring periodic tilings of regular polygons from images[J]. The Visual Computer, 2019,35:899-907.
doi: 10.1007/s00371-019-01665-y |
[6] | 邹玉茹, 李文侠, 鲁坚. Chair Tilings非周期艺术图案的生成[J]. 计算机辅助设计与图形学学报, 2006,18(4):498-501. |
ZOU Yuru, LI Wenxia, LU Jian. Generation of Chair Tilings aperiodic aesthetic patterns[J]. Journal of Computer-aided Design & Computer Graphics, 2006,18(4):498-501. | |
[7] | HANN M A. Structure and form in textile design: curriculum and bibliography[J]. Journal of The Textile Institute, 2018,109(3):285-293 |
[8] | 施国生, 胡觉亮. 对称性原理在织物组织设计中的应用[J]. 浙江工程学院学报, 2000,17(3):155-157. |
SHI Guosheng, HU Jueliang. Application of symmetry principle in fabric weave design[J]. Journal of Zhejiang Institute of Science and Technology, 2000,17(3):155-157. | |
[9] | 赵良臣, 闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003,24(6):33-34. |
ZHAO Liangchen, WEN Tao. Mathematical principle of rotating weave design[J]. Journal of Textile Research, 2003,24(6):33-34. | |
[10] | 施国生, 张瑜秋, 熊超. 图像变换在多臂织物组织设计上的应用[J]. 纺织学报, 2006,27(7):23-26. |
SHI Guosheng, ZHANG Yuqiu, XIONG Chao. Application of image transformation technique on dobby fabric weave design[J]. Journal of Textile Research, 2006,27(7):23-26. | |
[11] | 张聿, 金耀, 孙家武, 等. 基于 L 系统的织物分形组织设计方法[J]. 纺织学报, 2007,28(5):51-54. |
ZHANG Yu, JIN Yao, SUN Jiawu, et al. Design method of fabric fractal weave based on L-system[J]. Journal of Textile Research, 2007,28(5):51-54. | |
[12] | 张聿, 金耀, 岑科军. 基于 IFS 的非规则分形组织设计方法[J]. 纺织学报, 2012,33(12):30-34. |
ZHANG Yu, JIN Yao, CEN Kejun. Method of designing irregular fractal weave based on IFS[J]. Journal of Textile Research, 2012,33(12):30-34. | |
[13] | 马铃琳, 张聿. 各层基础组织互异的分形组织设计方法[J]. 丝绸, 2013,50(9):45-49. |
MA Linglin, ZHANG Yu. Design method of fractal weave with diverse basic weaves in different layers[J]. Journal of Silk, 2013,50(9):45-49. | |
[14] | 章平, 张聿. 同层仿射分形织物的设计方法[J]. 丝绸, 2014,51(12):35-38. |
ZHANG Ping, ZHANG Yu. Design method of fractal fabrics of affinity in the same layer[J]. Journal of Silk, 2014,51(12):35-38. | |
[15] | 熊丽丽, 张聿. 基于斜纹基本组织的回纹分形组织设计方法[J]. 丝绸, 2015,52(1):31-34. |
XIONG Lili, ZHANG Yu. Design method of fret fractal weave based on twill weave[J]. Journal of Silk, 2015,52(1):31-34. | |
[16] | 熊宇龙, 张华熊, 鲁佳亮, 等. 基于扩展分形模型的织物组织设计方法[J]. 浙江理工大学学报, 2018,39(3):341-345. |
XIONG Yulong, ZHANG Huaxiong, LU Jialiang, et al. Fabric-weave design method based on extended fractal model[J]. Journal of Zhejiang Sci-Tech University, 2018,39(3):341-345. | |
[17] | 金耀, 张聿. 织物组织的群表达方法[J]. 纺织学报, 2010,31(6):48-51. |
JIN Yao, ZHANG Yu. Studies on fabric weave representation by group theory[J]. Journal of Textile Research, 2010,31(6):48-51. |
[1] | SHI Guo-sheng;ZHANG Yu-qiu;XIONG Chao. Application of image transformation technique on dobby fabric weave design [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(7): 23-26. |
|