Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (09): 16-20.doi: 10.13475/j.fzxb.20190904105

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of high strength polyvinyl chloride hollow fiber membrane

MEI Shuo1(), LI Jinchao2, LU Shiyan1, XIAO Changfa3, YANG Yong1, FENG Xiangwei2   

  1. 1. School of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
    2. School of Textiles, Henan University of Engineering, Zhengzhou, Henan 451191, China
    3. State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
  • Received:2019-09-16 Revised:2020-06-08 Online:2020-09-15 Published:2020-09-25

Abstract:

In order to solve the problem of hard synchronous increase strength and permeability of polyvinyl chloride (PVC) membrane obtained by solution phase inversion method, high performance of PVC hollow fiber membranes were prepared using the screw extrusion spinning method, with MT-I composite powder as pore-forming agent and dioctyl phthalate as diluent. The influences of heat setting ratio and extraction on morphology and structure of fiber membrane were investigated. Separation performance and mechanical properties of fiber membranes were characterized by pure water flux, rejection of carbon ink and tensile strength. Results show that as the stretching ratio increased, the tensile strength of the membrane increases and elongation at break decreases. After ethanol extraction, more micro pores appear on the surface of the membrane which improves the permeability of the membrane. The membrane with stretching ratio 3 after ethanol extraction exhibits a larger permeability with pure water flux of 798 L/(m2·h), and a better performance with tensile strength of 17.7 MPa and elongation at break of 70.67%.

Key words: polyvinyl chloride, screw extrusion spinning method, hollow fiber membrane, separation membrane, water treatment, rejection ratio

CLC Number: 

  • TB324

Fig.1

Scheme of screw extrusion spinning PVC hollow fiber membrance apparatus"

Fig.2

FT-IR spectra of PVC and PVC/DOP primary hollow fiber membrane"

Tab.1

Effect of DOP on A1 427/A1 435 of PVC hollow fiber membrane"

纤维膜 A1 427 A1 435 A1 427/A1 435
纯PVC纤维膜 0.024 80 0.023 47 1.056 70
PVC/DOP初生纤维膜 0.032 02 0.026 67 1.201 00

Fig.3

Cross section images of PVC/DOP hollow fiber membrane under different heat setting ratio. (a)1 time;(b)2 times;(c)3 times"

Fig.4

Cross section images of PVC hollow fiber membrane before(a)and after(b)DOP extraction"

Fig.5

Water flux and rejection rate of PVC/DOP hollow fiber membrane under different heat setting ratio"

Fig.6

Water flux and rejection rate of PVC hollow fiber membrane after DOP extraction"

Fig.7

Mechanical properties of PVC/DOP primary hollow fiber membrane(a)and PVC hollow fiber membrane(b) at different heat setting ratio"

[1] 文佩, 钱建华. 中空纤维超滤膜在水处理中的应用[J]. 纺织学报, 2014,35(8):15-20.
WEN Pei, QIAN Jianhua. Application of hollow fiber ultrafiltration membrane in water treatment[J]. Journal of Textile Research, 2014,35(8):15-20.
[2] LIU T Y, ZHANG R X, LI Q, et al. Fabrication of anovel dual-layer (PES/PVDF) hollow fiber ultrafiltration membrane for waste water treatment[J]. Journal of Membrane Science, 2014,472:119-132.
[3] 刘海亮, 肖长发, 黄庆林, 等. 增强型中空纤维多孔膜研究进展[J]. 纺织学报, 2015,36(9):154-161.
LIU Hailiang, XIAO Changfa, HUANG Qinglin, et al. Research progress of reinforced hollow fiber porous membranes[J]. Journal of Textile Research, 2015,36(9):154-161.
[4] 梅硕. 聚氯乙烯微孔膜的机构设计与性能研究[D]. 天津:天津工业大学, 2011:81-83.
MEI Shuo. Structure design and properties research on Poly (vinyl chloride) miscroporous membrane[D]. Tianjin: Tiangong University, 2011: 81-83.
[5] ZHANG X, CHEN Y, KONSOWA A H, et al. Evaluation of an innovative polyvinyl chloride (PVC) ultrafiltration membrane for wastewater treatment[J]. Separation Purification Technology, 2009,70(1):71-78.
[6] WANG J H, WU Y L, ZHANG Y h, et al. Fabrication and performance of a low operating pressure nanofitration poly(vinyl chloride) hollow fiber membrane[J]. Chinese Journal of Polymer Science, 2014,32(3):377-384.
[7] XU J, XU Z L. Poly(vinyl chloride) (PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent[J]. Journal of Membrane Science, 2002,208(1-2):203-212.
doi: 10.1016/S0376-7388(02)00261-2
[8] SABERI S, SHAMSABADI A A, SHAHROOZ M, et al. Improving the transport and antifouling properties of poly(vinyl chloride) hollow-fiber ultrafiltration membranes by incorporating silica nanoparticles[J]. ACS Omega, 2018,3(12):17439-17446.
pmid: 31458349
[9] LIU H L, XIAO C F, HUANG Q L, et al. Post-treatment effect on morphology and performance of polyurethane·based hollow fiber membranes through melt-spinning method[J]. Journal of Membrane Science, 2013,427:326-335.
[10] LIU H L, XIAO C F, HUANG Q L, et al. Preparation and interface structure study on dual-layer polyvinyl chloride matrix reinforced hollow fiber membranes[J]. Journal of Membrane Science, 2014,472(2) 210-221.
[11] 鲁方. 同质增强型聚氯乙烯中空纤维膜结构调控与性能研究[D]. 天津:天津工业大学, 2019:18-19.
LU Fang. Study on structure regulation and properties of homogeneous reinforced polyvinyl chloride hollow fiber membrane[D]. Tiangong University, 2019:18-19.
[12] KIM H C, GILBERT M. Characterisation and properties of oriented PVC fibres[J]. Polymer, 2004,45(21):7293-7301.
[13] 张美珍, 王桂花. 用红外光谱法研究聚氯乙烯的增塑机理[J]. 北京化工大学学(自然科学版), 2000,27(2):29-31.
ZHANG Meizhen, WANG Guihua. Study of the mechanism in plasitized PVC with infrared spectrograp-hy[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2000,27(2):29-31.
[1] XIA Yun, LÜ Wangyang, CHEN Wenxing. Catalytic degradation of dye by metal phthalocyanine /multi-walled carbon nanotubes under simulated solar light [J]. Journal of Textile Research, 2020, 41(12): 94-101.
[2] SONG Yingqi, PAN Jiahao, WU Liguang, WANG Ting, DONG Chunying. Fabrication of photocatalytic floating spheres for degradation of methyl-orange under illumination of visible light [J]. Journal of Textile Research, 2020, 41(12): 102-110.
[3] YU Yucong, SHI Xiaolong, LIU Lin, YAO Juming. Recent progress in super wettable textiles for oil-water separation [J]. Journal of Textile Research, 2020, 41(11): 189-196.
[4] QIAN Yifan, ZHOU Tang, ZHANG Liying, LIU Wanshuang, FENG Quan. Preparation of polyacrylonitrile / cellulose acetate / TiO2 composite nanofiber membrane and its photocatalytic degradation performance [J]. Journal of Textile Research, 2020, 41(05): 8-14.
[5] WANG Jiankun, JIANG Xiaodong, GUO Jing, YANG Lianhe. Research progress of functionalized graphene oxide adsorption materials [J]. Journal of Textile Research, 2020, 41(04): 167-173.
[6] SHI Xiaoping, LI Yao, PAN Jiahao, WANG Ting, WU Liguang. Preparation of visible-light-response TiO2 photocatalyst by hydrothermal reduction [J]. Journal of Textile Research, 2019, 40(10): 105-112.
[7] XIAO Chuanmin, XIAO Changfa, ZHANG Tai, WANG Xinya. Structure and properties of braided tube reinforced polylactic acid hollow fiber membranes [J]. Journal of Textile Research, 2019, 40(08): 20-26.
[8] LI Nana, LU Qingchen, YIN Weiwei, XIAO Changfa. Influence of cooling temperature on structure and properties of polyvinylidene fluoride/ultrahigh-molecular-weight polyethylene blends hollow fiber membrane [J]. Journal of Textile Research, 2019, 40(07): 8-12.
[9] WANG Zexing, ZHU Wenjia, HE Bin, LIU Chao. Mechanical behavior and energy dissipation of polyvinyl chloride membrane under uniaxial multi-level cyclic loading [J]. Journal of Textile Research, 2019, 40(06): 20-26.
[10] ZHANG Lanhe, ZHANG Mingshuang, GAO Weiwei, LI Zheng, JIA Yanping, GAO Min, LING Liangxiong. Preparation of cobalt aluminate/ceramic honeycomb catalyst and application thereof in dye wastewater treatment [J]. Journal of Textile Research, 2019, 40(03): 125-132.
[11] WANG Fengbo, WANG Jiayi, SUN Zheng, MA Yanxue, LÜ Yingzhi, ZHANG Weifeng, LÜ Yan, LÜ Mingming, CHEN Siyu, LI Yuling, CHEN Xiaoguang. Pilot study on treatment of polyacrylate sizing wastewater [J]. Journal of Textile Research, 2019, 40(01): 108-113.
[12] ZHAO Qinghua, MAO Qincen, MEI Tao, NIU Yingmai, WANG Dong. Effect of flame retardant on properties of polyvinyl chloride/polyester composites [J]. Journal of Textile Research, 2019, 40(01): 103-107.
[13] . Prediction on creep predictions of polyvinyl chloride coated membrane [J]. Journal of Textile Research, 2018, 39(10): 68-73.
[14] . Influence of surface modification on interfacial properties of polyester fabric/polyvinyl chloride composites [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 102-107.
[15] . Study on the concentration and recovery of cellulose solvent N-methylmorpholine-N-oxide by vacuum menbrane distillation [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 16-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!