Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (10): 116-121.doi: 10.13475/j.fzxb.20190904606

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation and characterization of conductive polyester nonwovens

WANG Qiuping, ZHANG Ruiping(), LI Chenghong, ZHANG Gecheng   

  1. Nantong University, Nantong, Jiangsu 226019, China
  • Received:2019-09-16 Revised:2020-07-14 Online:2020-10-15 Published:2020-10-27
  • Contact: ZHANG Ruiping E-mail:zhang.rp@ntu.edu.cn

Abstract:

In order to develop intelligent flexible sensors and metallized conductive textile materials with special protection functions, nickel-plated polyester nonwovens were prepared by high-temperature palladium-free active nickel source and electroless plating. The effects of plating temperature, pH value, plating time and main salt concentration on the resistance of polyester nonwovens were analyzed, and the best plating parameters was optimized. The conductivity, heat preservation and electromagnetic radiation resistance of the coated nonwovens were tested. The results show that the optimal condition for electroless plating process of nonwoven fabrics is as follows: the concentration of the main salt of electroless nickel plating is 0.1 mol/L, the plating temperature is 50 ℃, the pH value is 9, and the time is 60 min. The resistance of nickel-plated nonwovens decreases to 0.114 Ω/□, indicating excellent conductivity. After nickel plating, the thermal resistance of nonwovens is improved, the clo value is increased, the heat transfer coefficient decreases, and the shielding efficiency increase in the range of 100-3 000 MHz, which has better heat preservation and anti-electromagnetic radiation performance. The coating on the surface of polyester fibers is found compact and smooth, and the main component of the coating is nickel.

Key words: electroless plating, polyester nonwoven fabric, conductive material, warmth retention, anti-electromagnetic radiation

CLC Number: 

  • TS195.5

Fig.1

DSC spectra of nickel acetate,sodium phosphate and mixture"

Tab.1

Electric resistance of nickel-plated nonwoven fabrics at different temperature"

温度/℃ 方阻/(Ω·□-1) 温度/℃ 方阻/(Ω·□-1)
30 0.571 70 0.406
50 0.250 90 0.649

Tab.2

Electric resistance of nickel-plated nonwoven fabrics at different pH value"

pH值 方阻/(Ω·□-1)
7 1.322
8 0.434
9 0.114
10 0.148
11 0.177

Tab.3

Electric resistance of nickel-plated nonwoven fabrics at different times"

时间/min 方阻/(Ω·□-1)
30 1.000
45 0.966
60 0.114
75 0.640
90 0.650

Fig.2

Conductive schematic diagram of nonwovens before(a) and after(b) nickel plating"

Tab.4

Warmth retention of nonwovens before and after nickel plating"

试样 试样厚度/mm 热阻/(m2·K·W-1) 克罗值/(m2·K·W-1) 热导率/(W·m-1·K-1) 传热系数/(W·m-2·K-1)
镀镍前非织造布 0.160 0.050 0.323 0.003 19.960
镀镍非织造布 0.260 0.070 0.455 0.003 14.186

Fig.3

Electromagnetic radiation resistance of nonwovens before and after nickel plating"

Fig.4

SEM images of non-woven fabrics before and after nickel plating. (a)Nonwoven fabrics(×3 000);(b) Nickel- plated nonwoven fabrics(×500);(c) Nickel-plated non-woven fabrics(×3 000); (d)Nickel-plated nonwoven fabrics(×15 000)"

Fig.5

EDS of surface elements after nickel plating"

Tab.5

Element content of nickel-plated nonwovens %"

元素 质量分数 原子分数
C 18.87 53.24
O 2.08 4.41
P 7.67 8.39
Ni 53.53 30.00
Au 17.85 3.07
总量 100.00 100.00
[1] 刘敏, 庄勤亮. 智能柔性传感器的应用及其发展前景[J]. 纺织科技进展, 2009,31(1):38-42.
LIU Min, ZHUANG Qinliang. Application and development prospect of intelligent flexible sensor[J]. Progress in Textile Science & Technology, 2009,31(1):38-42.
[2] 刘静萍, 葛圣松, 孙宏飞, 等. 化学镀的国内外研究现状及展望[J]. 山东机械, 2001,37(2):2-5.
LIU Jingping, GE Shengsong, SUN Hongfei, et al. Research status and prospect of electroless plating at home and abroad[J]. Shandong Machinery, 2001,37(2):2-5.
[3] 杨晓凤, 张葛成, 钟菲菲, 等. 涤纶织物的铁镍化学镀工艺研究[J]. 南通大学学报, 2015,14(3):35-42.
YANG Xiaofeng, ZHANG Gecheng, ZHONG Feifei, et al. Study on the electroless plating process of iron-nickel composited on PET fabrics[J]. Journal of Nantong University, 2015,14(3):35-42.
[4] 王秋寒, 王亚静, 董科萍, 等. 服装结构及假人模型对电磁辐射防护服屏蔽效能的影响[J]. 纺织学报, 2020,41(1):124-130.
WANG Qiuhan, WANG Yajing, DONG Keping, et al. Effect of clothing structure and dummy model on shielding effectiveness of electromagnetic protecting clothing[J]. Journal of Textile Research, 2020,41(1):124-130.
[5] 杜晓谊, 张丽平, 田安丽, 等. 导电涤纶涂层织物的制备及其性能[J]. 纺织学报, 2016,37(10):78-82.
DU Xiaoyi, ZHANG Liping, TIAN Anli, et al. Preparation and properties of conductive polyester coated fabric[J]. Journal of Textile Research, 2016,37(10):78-82.
[6] 周存, 何雅僖. 超疏水导电聚酯织物的制备及其性能[J]. 纺织学报, 2018,39(8):88-94.
ZHOU Cun, HE Yaxi. Preparation and properties of superhydrophobic conductive polyethylene terephthalate fabrics[J]. Journal of Textile Research, 2018,39(8):88-94.
[7] 张永锋, 马玲俊, 郭为民, 等. 非金属化学镀的活化工艺[J]. 材料开发与应用, 2000,15(2):30-34.
ZHANG Yongfeng, MA Lingjun, GUO Weimin, et al. The activated process for chemical plating of non-metal material[J]. Development and Application of Materials, 2000,15(2):30-34.
[8] 王立娟, 李坚. NaBH4前处理桦木化学镀镍制备木质电磁屏蔽复合材料[J]. 材料工程, 2010,38(4):85-89.
WANG Lijuan, LI Jian. Preparation of wood-based electromagnetic shielding composite by electroless nickel plating on birch veneer pretreated with NaBH4[J]. Journal of Materials Engineering, 2010,38(4):85-89.
[9] JIANG S Q, GUO R H. Effect of polyester fabric through electroless Ni-P plating[J]. Fibers and Polymers, 2008,9(6):755-760.
doi: 10.1007/s12221-008-0118-x
[10] 张葛成, 张瑞萍, 钟菲菲, 等. 涤纶织物的铜镍无钯化学镀工艺研究[J]. 印染助剂, 2016,33(8):33-37.
ZHANG Gecheng, ZHANG Ruiping, ZHONG Feifei, et al. Study on electroless Ni-Cu plating with palladium-free activation on PET fabric[J]. Textile Auxiliaries, 2016,33(8):33-37.
[11] 张葛成, 张瑞萍, 钟菲菲, 等. 铁镍复合涤纶织物的无钯活化工艺[J]. 印染, 2016,42(5):11-14.
ZHANG Gecheng, ZHANG Ruiping, ZHONG Feifei, et al. Palladium-free activation process of iron-nickel composite polyester fabric[J]. China Dyeing & Finishing, 2016,42(5):11-14.
[12] 张葛成, 张瑞萍. 超声波活化法对涤纶织物化学镀铁镍的影响[J]. 染整技术, 2016,38(7):11-15.
ZHANG Gecheng, ZHANG Ruiping. Effect of ultrasonic activation method on iron nickel composited PET fabrics[J]. Textile Dyeing and Finishing Journal, 2016,38(7):11-15.
[13] 张葛成, 张瑞萍, 丁志荣, 等. 铁镍复合涤纶织物的化学镀[J]. 印染, 2015,41(5):15-18.
ZHANG Gecheng, ZHANG Ruiping, DING Zhirong, et al. Electroless plating of Fe-Ni composite polyester fabric[J]. China Dyeing & Finishing, 2015,41(5):15-18.
[14] 杨晓凤, 张葛成, 钟菲菲, 等. 金属复合织物的制备及其应用[J]. 纺织科技进展, 2015,37(7):1-5.
YANG Xiaofeng, ZHANG Gecheng, ZHONG Feifei, et al. Preparation and application of metal composite fabrics[J]. Progress in Textile Science & Technology, 2015,37(7):1-5.
[15] 余祖孝, 陈建, 郝世雄, 等. 化学镀Ni-Co-P合金工艺研究[J]. 材料保护, 2007,40(1):22-24.
YU Zuxiao, CHEN Jian, HAO Shixiong, et al. Study of process for electroless plating of Ni-Co-P alloy coaling[J]. Materials Protection, 2007,40(1):22-24.
[16] 余祖孝, 郝世雄, 李威. 涤纶织物化学镀Ni-P合金工艺[J]. 上海纺织科技, 2010,38(6):24-26.
YU Zuxiao, HAO Shixiong, LI Wei. Electroless Ni-P alloy plating on polyester fabrics[J]. Shanghai Textile Science & Technology, 2010,38(6):24-26.
[17] 张新超, 杨文彬, 周元林, 等. 涤纶织物表面化学镀Ni-Co-Fe-P合金的研究[J]. 功能材料, 2009,40(10):1626-1628.
ZHANG Xinchao, YANG Wenbin, ZHOU Yuanlin, et al. Study on electroless Ni-Co-Fe-P alloy plating on polyester fabric surface[J]. Functional Materials, 2009,40(10):1626-1628.
[18] GUO R H, JIANG S Q, YUEN C W M, et al. Microstructure and electromagnetic interference shielding effectiveness of electroless Ni-P plated polyester fabric[J]. Journal of Materials Science: Materials in Electronics, 2009,20:735-740.
doi: 10.1007/s10854-008-9795-x
[19] 王松, 戴亚堂. 十二烷基硫酸钠对涤纶化学镀镍层质量的影响[J]. 材料保护, 2009,42(11):30-32.
WANG Song, DAI Yatang. Effect of sodium dodecyl sulfate on the quality of electroless Ni-P coating of terylene cloth[J]. Materials Protection, 2009,42(11):30-32.
[1] WAN Ailan, MIAO Xuhong, MA Pibo, CHEN Qing, CHEN Fangfang. Design and properties of functional weft-knitted twill denim fabric [J]. Journal of Textile Research, 2019, 40(04): 55-59.
[2] . Preparation and properties of polypyrrole/cotton anti-microwave radiation fabric [J]. Journal of Textile Research, 2018, 39(09): 95-101.
[3] . Structure and property of ducklings down [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 27-32.
[4] . Development of self-coated dual protective fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 39-43.
[5] . Evaluation of warmth retention property of scarf [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 129-134.
[6] . Thermal properties of polyimide fiber fabrics for textiles [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 62-67.
[7] . Relationship between fractal structure and warmth retention properties of wool fiber assembly [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 11-15.
[8] . Effect of alkaline-oxygen treatment on wearabilities of cationic dyeable hollow polyester knitted fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(4): 88-0.
[9] . Influence of fabric structure on sweater warmth retention [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 34-0.
[10] . Study on performance of far-infrared nanometer textiles [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(9): 49-0.
[11] . Preparation of nano-nickel colloid and its application to activation of electroless plating of fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(11): 77-80.
[12] WEI Sainan;LIU Chaoying;LI Ruizhou;WU Huanling;ZHANG Changwei. Influence of fabric structure on its thermal comfort property in wet state [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(8): 42-44.
[13] TAN Liping;WANG Fumei;LIU Wei. Warmth retention property of kapok range of wadding [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(4): 38-40.
[14] FENG Zhihong;ZHU Liangjun;MIN Sijia;CAI jie;L Jie. Properties of floss silk with high elasticity and warmth retention [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(4): 22-25.
[15] LIU Wei;ZHOU Sumeng;HAN Shifeng;WANG Fumei. Properties of downPkapok battings [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(11): 17-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!