Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (12): 152-161.doi: 10.13475/j.fzxb.20190905410
• Academic Salon Column for New Insight of Textile Science and Technology: Preparation Technology and • Previous Articles Next Articles
ZHANG Ze1,2, XU Weijun1, KANG Hongliang2, XU Jian2, LIU Ruigang2,3()
CLC Number:
[1] | FITZER E. Carbon Fibres: Present State and Future Expectations[M]. Berlin: Springer, 1990: 3-41. |
[2] | TANG M M, BACON R. Carbonization of cellulose fibers: 1. Low temperature pyrolysis[J]. Carbon, 1964,2:211-220. |
[3] | LIU H C, TUAN C C, DAVIJANI A A B, et al. Rheological behavior of polyacrylonitrile and polyacrylonitrile/lignin blends[J]. Polymer, 2017,111:177-182. |
[4] | TAN L J, PAN J P, WAN A J. Shear and extensional rheology of polyacrylonitrile solution: effect of ultrahigh molecular weight polyacrylonitrile[J]. Colloid and Polymer Science, 2012,290:289-295. |
[5] | LI Q, XIE S X, SEREM W K, et al. Quality carbon fibers from fractionated lignin[J]. Green Chemistry, 2017,19:1628-1634. |
[6] |
LI Q, RAGAUSKAS A J, YUAN J S. Lignin carbon fiber: the path for quality[J]. TAPPI Journal, 2017,16:107-108.
doi: 10.32964/TJournal |
[7] |
STEUDLE L M, FRANK E, OTA A, et al. Carbon fibers prepared from melt spun peracylated softwood lignin: an integrated approach[J]. Macromolecular Materials and Engineering, 2017,302:1700195.
doi: 10.1002/mame.v302.10 |
[8] |
TRICK K A, SALIBA T E. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite[J]. Carbon, 1995,33:1509-1515.
doi: 10.1016/0008-6223(95)00092-R |
[9] | BEHR M J, LANDES B G, BARTON B E, et al. Structure-property model for polyethylene-derived carbon fiber[J]. Carbon, 2016,107:525-535. |
[10] |
YOUNKER J M, SAITO T, HUNT M A, et al. Pyrolysis pathways of sulfonated polyethylene, an alternative carbon fiber precursor[J]. Journal of the American Chemical Society, 2013,135:6130-6141.
pmid: 23560686 |
[11] | 王茂章, 贺福. 碳纤维的制造、性质及其应用[M]. 北京: 科学出版社, 1984: 1-20. |
WANG Maozhang, HE Fu. Manufacture,Properties and Applications of Carbon Fiber[M]. Beijing: Science Press, 1984: 1-20. | |
[12] | NEWCOMB B A. Processing, structure, and properties of carbon fibers[J]. Composites Part A: Applied Science and Manufacturing, 2016,91:262-282. |
[13] | ZIABICKI A, SONS J W. Fundamentals of Fibre Formation[M]. Amsterdam: Elsevier, 1976: 15-35. |
[14] | DALTON S, HEATLEY F, BUDD P M. Thermal stabilization of polyacrylonitrile fibres[J]. Polymer, 1999,40:5531-5543. |
[15] | OUYANG Q, CHENG L, WANG H J, et al. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile[J]. Polymer Degradation and Stability, 2008,93:1415-1421. |
[16] | WATT W, JOHNSON W. Mechanism of oxidization of polyacrylonitrile fibers[J]. Nature, 1975,257:210-212. |
[17] | NUNNA S, NAEBE M, HAMEED N, et al. Evolution of radial heterogeneity in polyacrylonitrile fibres during thermal stabilization: an overview[J]. Polymer Degradation and Stability, 2017,136:20-30. |
[18] | 张寿春, 温月芳, 杨永岗, 等. 衣康酸铵改性对聚丙烯腈热性能的影响[J]. 高分子材料科学与工程, 2004,20(3):103-106. |
ZHANG Shouchun, WEN Yuefang, YANG Yonggang, et al. Effect of modification of itacnic acid ammonium on the thermal properties of polyacrylonitrile[J]. Polymer Materials Science & Engineering, 2004,20(3):103-106. | |
[19] | GUPTA V B, KOTHARI V K. In Manufactured Fibre Technology[M]. Dordrecht:Springer, 1997: 248-270. |
[20] | NEWCOMB B A, GULGUNJE P V, LIU Y, et al. Polyacrylonitrile solution homogeneity study by dynamic shear rheology and the effect on the carbon fiber tensile strength[J]. Polymer Engineering & Science, 2016,56:361-370. |
[21] | CHAE H G, NEWCOMB B A, GULGUNJE P V, et al. High strength and high modulus carbon fibers[J]. Carbon, 2015,93:81-87. |
[22] | 余晓兰. 聚丙烯腈基材料的制备、表征及应用[D]. 北京:中国科学院大学, 2011: 32-46. |
YU Xiaolan. The preparation, characterization and applications of polyacrylnitril based materials[D]. Beijing: University of Chinese Academy of Sciences, 2011: 32-46. | |
[23] | 刘小芳. 聚丙烯腈溶胶-凝胶转变及其纤维结构演变的研究[D]. 北京: 中国科学院大学, 2014: 68-84. |
LIU Xiaofang. Researches on the sol-gel transition of polyacrylnitril solution and the structure formation and development of polyacrylnitril fibers[D]. Beijing: University of Chinese Academy of Sciences, 2014: 68-84. | |
[24] | FRUSHOUR B G. Melting and structure of polyacrylonitrile[J]. Bulletin of the American Physical Society, 1980,25:352-353. |
[25] |
MARINESCO S, CAREW T J. Improved electrochemical detection of biogenic amines in Aplysia using base-hydrolyzed cellulose-coated carbon fiber microelec-trodes[J]. Journal of Neuroscience Methods, 2002,117:87-97.
pmid: 12084568 |
[26] | KO T H. Influence of continuous stabilization on the physical-properties and microstructure of PAN-based carbon-fibers[J]. Journal of Applied Polymer Science, 1991,42:1949-1957. |
[27] | HUANG X S. Fabrication and properties of carbon fibers[J]. Materials, 2009,2:2369-2403. |
[28] | SEDGHI A, FARSANI R E, SHOKUHFAR A. The effect of commercial polyacrylonitrile fibers characterizations on the produced carbon fibers properties[J]. Journal of Materials Processing Technology, 2008,198:60-67. |
[29] | DUNHAM M G, EDIE D D. Model of stabilization for PAN-based carbon-fiber precursor bundles[J]. Carbon, 1992,30:435-450. |
[30] |
GUPTA A, HARRISON I R. New aspects in the oxidative stabilization of PAN-based carbon fibers[J]. Carbon, 1996,34:1427-1445.
doi: 10.1016/S0008-6223(96)00094-2 |
[31] |
BAJAJ P, SREEKUMAR T V, SEN K. Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers[J]. Polymer, 2001,42:1707-1718.
doi: 10.1016/S0032-3861(00)00583-8 |
[32] | TSAI J S, LIN C H. Effect of comonomer composition on the properties of polyacrylonitrile precursor and resulting carbon-fiber[J]. Journal of Applied Polymer Science, 1991,43:679-685. |
[33] | ARBAB S, ZEINOLEBADI A. A procedure for precise determination of thermal stabilization reactions in carbon fiber precursors[J]. Polymer Degradation and Stability, 2013,98:2537-2545. |
[34] | KAKIDA H, TASHIRO K, KOBAYASHI M. Mechanism and kinetics of stabilization reaction of polyacrylonitrile and related copolymers: 1: relationship between isothermal DSC thermogram and FT/IR spectral change of an acrylonitrile methacrylic acid copolymer[J]. Polymer Journal, 1996,28:30-34. |
[35] | FU Z Y, LIU B J, ZHANG H X. Study on thermal oxidative stabilization reactions of poly(acrylonitrile-co-itaconic acid) copolymers synthesized at different polymerization stages[J]. Journal of Applied Polymer Science, 2017,134(35):45245. |
[36] | XUE Y, LIU J, LIANG J Y. Correlative study of critical reactions in polyacrylonitrile based carbon fiber precursors during thermal-oxidative stabilization[J]. Polymer Degradation and Stability, 2013,98:219-229. |
[37] | KAKIDA H, TASHIRO K. Mechanism and kinetics of stabilization reactions of polyacrylonitrile and related copolymers: 3: comparison among the various types of copolymers as viewed from isothermal DSC thermograms and FT-IR spectral changes[J]. Polymer Journal, 1997,29:557-562. |
[38] | KAKIDA H, TASHIRO K. Mechanism and kinetics of stabilization reaction of polyacrylonitrile and related copolymers: 2: relationships between isothermal DSC thermograms and FT-IR spectral changes of polyacrylonitrile in comparison with the case of acrylonitrile methacrylic acid copolymer[J]. Polymer Journal, 1997,29:353-357. |
[39] | GUPTA A, HARRISON I R. New aspects in the oxidative stabilization of PAN-based carbon fibers[J]. Carbon, 1997,35:809-818. |
[40] | GUPTA A K, PALIWAL D K, BAJAJ P. Acrylic precursors for carbon-fibers[J]. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics, 1991,31(1):1-89. |
[41] | SIVY G T, COLEMAN M M. Fourier-transform IR studies of the degradation of polyacrylonitrile co-polymers: 4: acrylonitrile-acrylamide co-polymers[J]. Carbon, 1981,19:137-139. |
[42] | COLEMAN M M, SIVY G T. Fourier-transform IR studies of the degradation of polyacrylonitrile co-polymers: 3: acrylonitrile-vinyl acetate co-polymers[J]. Carbon, 1981,19:133-135. |
[43] | HAO J, LIU Y D, LU C X. Effect of acrylonitrile sequence distribution on the thermal stabilization reactions and carbon yields of poly(acrylonitrile-co-methyl acrylate)[J]. Polymer Degradation and Stability, 2018,147:89-96. |
[44] | HOUTZ R C. "Orlon" acrylic fiber: chemistry and properties[J]. Textile Research Journal, 1950,20:786-801. |
[45] | SCHURZ J. Discoloration effects in acrylonitrile polymers[J]. Journal of Polymer Science, 1958,28:438-439. |
[46] |
STANDAGE A E, MATKOWSKY R D. Thermal oxidation of polyacrylonitrile[J]. European Polymer Journal, 1971,7:775-783.
doi: 10.1016/0014-3057(71)90043-7 |
[47] | FRIEDLANDER H N, PEEBLES L H, BRANDRUP J, et al. On the chromophore of polyacrylonitrile: VI: mechanism of color formation in polyacrylonitrile[J]. Macromolecules, 1968,1:79-86. |
[48] | HENRICI-OLIVE G, OLIVE S. Molecular Interactions and Macroscopic Properties of Polyacrylonitrile and Model Substances[M]. Berlin: Springer, 1979: 123-152. |
[49] | GANSTER J, FINK H P, ZENKE I. Chain conformation of polyacrylonitrile: a comparison of model scattering and radial-distribution functions with experimental wide-angle X-ray-scattering results[J]. Polymer, 1991,32:1566-1573. |
[50] | LIU X R, CHEN W, HONG Y L, et al. Stabilization of atactic-polyacrylonitrile under nitrogen and air as studied by solid-state NMR[J]. Macromolecules, 2015,48:5300-5309. |
[51] | LIU X R, MAKITA Y, HONG Y L, et al. Chemical reactions and their kinetics of atactic-polyacrylonitrile as revealed by solid-state 13C NMR[J]. Macromolecules, 2017,50:244-253. |
[52] |
WANG Y S, XU L H, WANG M Z, et al. Structural identification of polyacrylonitrile during thermal treatment by selective C-13 labeling and solid-State C-13 NMR spectroscopy[J]. Macromolecules, 2014,47:3901-3908.
doi: 10.1021/ma500727n |
[53] | JOHNSON D J. Recent advances in studies of carbon-fiber structure[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 1980,294:443-449. |
[54] |
WARNER S B, PEEBLES L H, UHLMANN D R. Oxidative stabilization of acrylic fibers: 1: oxygen-uptake and general-model[J]. Journal of Materials Science, 1979,14:556-564.
doi: 10.1007/BF00772714 |
[55] |
WARNER S B, PEEBLES L H, UHLMANN D R. Oxidative stabilization of acrylic fibers: 2: stabilization dynamics[J]. Journal of Materials Science, 1979,14:565-572.
doi: 10.1007/BF00772715 |
[56] |
LAYDEN G K. Retrograde core formation during oxidation of polyacrylonitrile filaments[J]. Carbon, 1972,10:59-60.
doi: 10.1016/0008-6223(72)90009-7 |
[57] |
JING M, WANG C G, WANG Q, et al. Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range of 350-600 ℃[J]. Polymer Degradation and Stability, 2007,92:1737-1742.
doi: 10.1016/j.polymdegradstab.2007.05.020 |
[58] |
JODEH S. Chemical structural characterization of pyrolyzed and subsequently ion-implanted poly(acrylonitrile)[J]. Journal of Analytical and Applied Pyrolysis, 2008,82:235-239.
doi: 10.1016/j.jaap.2008.03.014 |
[59] | 钱鑫, 张永刚, 王雪飞. 高温石墨化对碳纤维结构的影响[J]. 高科技纤维与应用, 2016,41(2):24-27. |
QIAN Xin, ZHANG Yonggang, WANG Xuefei. Effect of high temperature graphitization on the structure of carbon fiber[J]. High-Tech Fiber and Application, 2016,41(2):24-27. | |
[60] | 韩赞, 张学军, 田艳红, 等. PAN基高模量碳纤维微观结构研究[J]. 航天返回与遥感, 2010,31(5):65-71. |
HAN Zan, ZHANG Xuejun, TIAN Yanhong, et al. Study on microstructure of high modulus PAN-based carbon fiber[J]. Space Reture and Remote Sensing, 2010,31(5):65-71. | |
[61] | 张新, 马雷, 李常清, 等. PAN基碳纤维微结构特征的研究[J]. 北京化工大学学报(自然科学版), 2008,35:58-60. |
ZHANG Xin, MA Lei, LI Changqing, et al. Study on microstructure characteristics of PAN-based carbon fiber[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2008,35(5):58-60. | |
[62] | 卢天豪, 陆文晴, 童元建. 聚丙烯腈基碳纤维高温石墨化综述[J]. 高科技纤维与应用, 2013,38(3):46-53. |
LU Tianhao, LU Wenqing, TONG Yuanjian. Review on graphitization of polyacrylonitrile based carbon fibers at high temperature[J]. High-Tech Fiber and Application, 2013,38(3):46-53. | |
[63] | 童元建, 王统帅, 王小谦, 等. PAN基碳纤维制备过程中的组成演变[J]. 化工新型材料, 2011,39(4):97-99. |
TONG Yuanjian, WANG Tongshuai, WANG Xiaoqian, et al. Composition evolution during the PAN-based carbon fiber preparation[J]. New Chemical Material, 2011,39(4):97-99. | |
[64] | 岳中仁. 炭化过程中预氧化 PAN 纤维的热分析[J]. 炭素技术, 1990(2):14-18. |
YUE Zhongren. Thermal analysis of PAN fiber preoxidized during carbonization[J]. Carbon Techniques, 1990(2):14-18. | |
[65] |
EDIE D D. The effect of processing on the structure and properties of carbon fibers[J]. Carbon, 1998,36:345-362.
doi: 10.1016/S0008-6223(97)00185-1 |
[66] |
CHEN J C, HARRISON I R. Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF)[J]. Carbon, 2002,40:25-45.
doi: 10.1016/S0008-6223(01)00050-1 |
[67] |
FITZER E, FROHS W, HEINE M. Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres[J]. Carbon, 1986,24:387-395.
doi: 10.1016/0008-6223(86)90257-5 |
[68] | ZHANG W X, LIU J, WU G. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers[J]. Carbon, 2003,41:2805-2812. |
[69] |
LIU J, WANG P H, LI R Y. Continuous carbonization of polyacrylonitrile-based oxidized fibers: aspects on mechanical properties and morphological structure[J]. Journal of Applied Polymer Science, 2010,52:945-950.
doi: 10.1002/app.1994.070520712 |
[70] | MATSUMOTO T. Mesophase pitch and its carbon fibers[J]. Pure and Applied Chemistry, 1985,57:1553-1562. |
[71] |
MITTAL J, MATHUR R B, BAHL O P. Post spinning modification of PAN fibres: a review[J]. Carbon, 1997,35:1713-1721.
doi: 10.1016/S0008-6223(97)00126-7 |
[72] |
KOWBEL W, HIPPO E, MURDIE N. Influence of graphitization environment of PAN based carbon-fibers on microstructure[J]. Carbon, 1989,27:219-226.
doi: 10.1016/0008-6223(89)90126-7 |
[73] |
RAHAMAN M S A, ISMAIL A F, MUSTAFA A. A review of heat treatment on polyacrylonitrile fiber[J]. Polymer Degradation and Stability, 2007,92:1421-1432.
doi: 10.1016/j.polymdegradstab.2007.03.023 |
[74] |
MITTAL J, MATHUR R B, BAHL O P, et al. Post spinning treatment of PAN fibers using succinic acid to produce high performance carbon fibers[J]. Carbon, 1998,36:893-897.
doi: 10.1016/S0008-6223(97)00198-X |
[75] | LIU F J, WANG H J, XUE L B, et al. Effect of microstructure on the mechanical properties of PAN-based carbon fibers during high-temperature graphitization[J]. Journal of Materials Science, 2008,43:4316-4322. |
[76] | MINUS M L, KUMAR S. The processing, properties, and structure of carbon fibers[J]. Jom, 2005,57(2):52-58. |
[77] |
LI W W, KANG H L, XU J, et al. Effects of ultra-high temperature treatment on the microstructure of carbon fibers[J]. Chinese Journal of Polymer Science, 2017,35:764-772.
doi: 10.1007/s10118-017-1922-9 |
[78] | 李伟伟, 康宏亮, 徐坚, 等. 高强高模型碳纤维与高模型碳纤维微观结构分析[J]. 高分子学报, 2018,49(3):380-388. |
LI Weiwei, KANG Hongliang, XU Jian, et al. Microstructures of high-strength high-modulus carbon fibers and high-modulus carbon fibers[J]. Acta Polymerica Sinica, 2018,49(3):380-388. |
|