Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (09): 149-154.doi: 10.13475/j.fzxb.20191000506

• Comprehensive Review • Previous Articles     Next Articles

Research progress in antibacterial substances from Apocynum venetum and their antibacterial mechanism

XU Xuanxuan1,2, GONG Jixian1,2, ZHANG Jianfei1,2,3(), WANG Li4, HUANG Jingfeng4   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
    3. Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, Shandong 266071, China
    4. Altay Gaubau Tea Co., Ltd., Altay, Xinjiang 836500, China
  • Received:2019-10-08 Revised:2020-04-02 Online:2020-09-15 Published:2020-09-25
  • Contact: ZHANG Jianfei E-mail:zhangjianfei1960@126.com

Abstract:

In order to elucidate the material basis for antibacterial property of Apocynum venetum (A. venetum) and facilitate the development and application of A. venetum fiber in medical and healthcare textiles, antibacterial substances in the bast of A. venetum and its technical fiber were reviewed and summarized including flavonoids, tannins, steroids, steroid glycosides, coumarins, phenolic acids, benzaldehydes, fatty acids and essential oils. The chemical composition and antibacterial activity of antibacterial substances were analyzed. Antibacterial mechanisms including inhibition of nucleic acid synthesis, membrane damage of the cell, inhibition of energy metabolism, effect on fatty acid synthesis, inhibition of migration, disrupting electron transport chain, inhibition of activity of bacterial enzymes, reduction in the absorption of nutrients and generation of toxic peroxidation and auto-oxidation degradation products were also highlighted. Finally, focusing on the problem of the origin of antibacterial substances of A. venetum fiber, it was pointed out that evolution of functional ingredients in the bast during degumming process should become an important direction for future study.

Key words: Apocynum venetum, bast, antibacterial substances, antibacterial activity, antibacterial mechanism

CLC Number: 

  • O636
[1] 巩继贤, 张秋亚, 张涛, 等. 韧皮结构对罗布麻生物脱胶的影响[J]. 纺织学报, 2017, 38(12):83-87.
GONG Jixian, ZHANG Qiuya, ZHANG Tao, et al. Investigation on bio-recalcitrance in biodegumming of Apocynum[J]. Journal of Textile Research, 2017, 38(12):83-87.
[2] LI M, HAN G, CHEN H, et al. Chemical compounds and antimicrobial activity of volatile oils from bast and fibers of Apocynum venetum[J]. Fibers and Polymers, 2012, 13(3):322-328.
[3] WANG L, HAN G, ZHANG Y. Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments[J]. Carbohydrate Polymers, 2007, 69(2):391-397.
[4] 郑丽莎, 高山, 王仑, 等. 罗布麻纤维抗菌机理研究[J]. 检验检疫学刊, 2009, 19(3):13-16.
ZHENG Lisha, GAO Shan, WANG Lun, et al. Study on antibacterial mechanism of Apocynum Venetum fiber[J]. Journal of Inspection and Quarantine, 2009, 19(3):13-16.
[5] 李明华. 罗布麻纤维抑菌成分与抑菌性能的研究[D]. 上海: 东华大学, 2011: 53-71.
LI Minghua. Study on antibacterial components and properties of Apocynum venetum fibers[D]. Shanghai: Donghua University, 2011: 53-71.
[6] 高世会, 郁崇文. 罗布麻中黄酮的超临界CO2萃取及其抗菌性[J]. 纺织学报, 2018, 39(8):71-76.
GAO Shihui, YU Chongwen. Supercritical carbon dioxide extraction and bacterial resistance of flavones from Apocynum venetum bast fiber[J]. Journal of Textile Research, 2018, 39(8):71-76.
[7] WANG Q, WANG H, XIE M. Antibacterial mechanism of soybean isoflavone on Staphylococcus aureus[J]. Archives of Microbiology, 2010, 192(11):893-898.
pmid: 20734190
[8] OHEMENG K A, SCHWENDER C F, FU K P, et al. DNA gyrase inhibitory and antibacterial activity of some flavones: 1[J]. Bioorganic & Medicinal Chemistry Letters, 1993, 3(2):225-230.
[9] PLAPER A, GOLOB M, HAFNER I, et al. Characterization of quercetin binding site on DNA gyrase[J]. Biochemical and Biophysical Research Communications, 2003, 306(2):530-536.
pmid: 12804597
[10] 田莉莉. 天然酚酸类对DNA损伤的抑制效应研究[D]. 天津: 天津大学, 2010: 41-44.
TIAN Lili. Inhibitory effects of natural phenolic acids on DNA damage[D]. Tianjin: Tianjin University, 2010: 41-44.
[11] TSUCHIYA H, IINUMA M. Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from sophora exigua[J]. Phytomedicine, 2000, 7(2):161-165.
pmid: 10839220
[12] ABRAM V, BERLEC B, OTA A, et al. Effect of flavonoid structure on the fluidity of model lipid membranes[J]. Food Chemistry, 2013, 139(1/4):804-813.
doi: 10.1016/j.foodchem.2013.01.100
[13] CUSHNIE T P T, LAMB A J. Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss[J]. Journal of Ethnopharmacology, 2005, 101(1/3):243-248.
doi: 10.1016/j.jep.2005.04.014
[14] MIRZOEVA O K, GRISHANIN R N, CALDER P C. Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria[J]. Microbiological Research, 1997, 152(3):239-246.
pmid: 9352659
[15] HARAGUCHI H, TANIMOTO K, TAMURA Y, et al. Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata[J]. Phytochemistry, 1998, 48(1):125-129.
pmid: 9621457
[16] SALVATORE M J, KING A B, GRAHAM A C, et al. Antibacterial activity of lonchocarpol A[J]. Journal of Natural Products, 1998, 61(5):640.
pmid: 9599265
[17] JEONG K, LEE J, KANG D, et al. Screening of flavonoids as candidate antibiotics against Enterococcus faecalis[J]. Journal of Natural Products, 2009, 72(4):719-724.
doi: 10.1021/np800698d pmid: 19236029
[18] ZHANG L, KONG Y, WU D, et al. Three flavonoids targeting the β-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori: crystal structure characterization with enzymatic inhibition assay[J]. Protein Science, 2008, 17(11):1971-1978.
pmid: 18780820
[19] PAOLILLO R, ROMANO CARRATELLI C, RIZZO A. Effect of resveratrol and quercetin in experimental infection by Salmonella enterica serovar typhimu-rium[J]. International Immunopharmacology, 2011, 11(2):149-156.
doi: 10.1016/j.intimp.2010.10.019 pmid: 21093605
[20] XIE W, ZHANG X, WANG T, et al. Botany, traditional uses, phytochemistry and pharmacology of Apocynum venetum L. (Luobuma): a review[J]. Journal of Ethnopharmacology, 2012, 141(1):1-8.
doi: 10.1016/j.jep.2012.02.003 pmid: 22421379
[21] STAPLETON P. Anti-Staphylococcus aureus activity and oxacillin resistance modulating capacity of 3-O-acyl-catechins[J]. International Journal of Antimicrobial Agents, 2004, 24(4):374-380.
doi: 10.1016/j.ijantimicag.2004.03.024 pmid: 15380264
[22] IKIGAI H, NAKAE T, HARA Y, et al. Bactericidal catechins damage the lipid bilayer[J]. Biochimica et Biophysica Acta, 1993, 1147(1):132-136.
doi: 10.1016/0005-2736(93)90323-r pmid: 8466924
[23] TSUCHIYA H. Stereospecificity in membrane effects of catechins[J]. Chemico-Biological Interactions, 2001, 134(1):41-54.
doi: 10.1016/s0009-2797(00)00308-2 pmid: 11248221
[24] 杨益, 苏文莉, 孙走南, 等. 植物多酚对5型腺病毒感染后宿主细胞膜流动性的影响[J]. 现代生物医学进展, 2015(18):3443-3447.
YANG Yi, SU Wenli, SUN Zounan, et al. Effect of plant polyphenols on the membrane fluidity of 293a cells infected by adenovirus-5[J]. Progress in Modern Biomedicine, 2015(18):3443-3447.
[25] NAKAYAMA M, SHIMATANI K, OZAWA T, et al. A study of the antibacterial mechanism of catechins: isolation and identification of Escherichia coli cell surface proteins that interact with epigallocatechin gallate[J]. Food Control, 2013, 33(2):433-439.
doi: 10.1016/j.foodcont.2013.03.016
[26] NAKAYAMA M, SHIMATANI K, OZAWA T, et al. Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis[J]. Journal of the Agricultural Chemical Society of Japan, 2015, 79(5):845-854.
[27] ZHANG Y, ROCK C O. Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase[J]. Journal of Biological Chemistry, 2004, 279(30):30994-31001.
[28] LI B, ZHANG R, DU Y, et al. Inactivation mechanism of the beta-ketoacyl-[acyl carrier protein] reductase of bacterial type-II fatty acid synthase by epigallocatechin gallate[J]. Biochemistry and Cell Biology, 2006, 84(5):755-762.
pmid: 17167539
[29] IRIE K, SATO T, TANAKA I, et al. Cardiotonic effect of Apocynum venetum L. extracts on isolated guinea pig atrium[J]. Journal of Natural Medicines, 2009, 63(2):111-116.
pmid: 19002560
[30] 邱坤和. 附子的安全应用[J]. 汕头大学医学院学报, 2002, 15(2):120.
QIU Kunhe. Safe application of aconite[J]. Journal of Shantou University Medical College, 2002, 15(2):120.
[31] 严秀珍, 梅兴国, 栾新慧, 等. 罗布麻茎的化学成分研究[J]. 上海第一医学院学报, 1985, 12(4):265-269.
YAN Xiuzhen, MEI Xingguo, LUAN Xinhui, et al. Studies on constituents of stems of Apocynum venetum Linn[J]. Acta Academiae Medicinae Primae Shanghai, 1985, 12(4):265-269.
[32] EBANA R U, MADUNAGU B E, EKPE E D, et al. Microbiological exploitation of cardiac glycosides and alkaloids from Garcinia kola, Borreria ocymoides, Kola nitida and Citrus aurantifolia[J]. Journal of Applied Microbiology, 2010, 71(5):398-401.
[33] LI H, ZHAO X, WANG J, et al. β-sitosterol interacts with pneumolysin to prevent Streptococcus pneumoniae infection[J]. Scientific Reports, 2016, 5(1):17688.
doi: 10.1038/srep17688
[34] BOUSETLA A, ZELLAGUI A, DEROUICHE K, et al. Chemical constituents of the roots of Algerian Bunium incrassatum and evaluation of its antimicrobial activity[J]. Arabian Journal of Chemistry, 2015, 8(3):313-316.
[35] 王一冰. 原儿茶酸影响动物肠道屏障功能的研究[D]. 杭州: 浙江大学, 2017: 1-3.
WANG Yibing. Effects of protocatechuic acid on intestinal barrier function of animal[D]. Hangzhou: Zhejiang University, 2017: 1-3.
[36] LIU K, TSAO S, YIN M. In vitro antibacterial activity of roselle calyx and protocatechuic acid[J]. Phytotherapy Research, 2005, 19(11):942-945.
pmid: 16317650
[37] FRIEDMAN M, HENIKA PRMANDRELL R E. Antibacterial activities of phenolic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica[J]. Journal of Food Protection, 2003, 66(10):1811-1821.
pmid: 14572218
[38] 吕锐, 苏冬梅, 孟林, 等. 罗布麻纤维的抗菌性能研究[J]. 青岛大学医学院学报, 2006, 42(1):71-72.
LV Rui, SU Dongmei, MENG Lin, et al. Antibiotic property of Apocynum venetum[J]. Acta Academiae Medicinae Qingdao Universitatis, 2006, 42(1):71-72.
[39] 王琨琳. 罗布麻织物服用性能的研究[D]. 芜湖: 安徽工程大学, 2014: 26-27.
WANG Kunlin. Study on the wearability of Apocynum fibric[D]. Wuhu: Anhui Polytechnic University, 2014: 26-27.
[40] GALBRAITH H, MILLER T B, PATON A M, et al. Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol[J]. Journal of Applied Bacteriology, 1971, 34(4):803-813.
[41] KABARA J J, SWIECZKOWSKI D M, CONLEY A J, et al. Fatty acids and derivatives as antimicrobial agents[J]. Antimicrobial Agents and Chemotherapy, 1972, 2(1):23-28.
doi: 10.1128/aac.2.1.23 pmid: 4670656
[42] 张希, 杨明, 宋飞, 等. 脂肪酸及其衍生物的抑菌活性[J]. 浙江大学学报(农业与生命科学版), 2013, 39(2):155-160.
ZHANG Xi, YANG Ming, SONG Fei, et al. Antimicrobial activity of selected fatty acids and their derivatives[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2013, 39(2):155-160.
[43] CHAMBERLAIN N R, MEHRTENS B G, XIONG Z, et al. Correlation of carotenoid production, decreased membrane fluidity, and resistance to oleic acid killing in Staphylococcus aureus 18Z[J]. Infection & Immunity, 1991, 59(12):4332-4337.
pmid: 1937793
[44] CARSON D D, DANEO-MOORE L. Effects of fatty acids on lysis of Streptococcus faecalis[J]. Journal of Bacteriology, 1980, 141(3):1122-1126.
pmid: 6102557
[45] SHEU C W, FREESE E. Effects of fatty acids on growth and envelope proteins of Bacillus subtilis[J]. Journal of Bacteriology, 1972, 111(2):516-524.
pmid: 4626502
[46] BECK V, JABUREK M, DEMINA T, et al. Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers[J]. The FASEB Journal, 2007, 21(4):1137-1144.
doi: 10.1096/fj.06-7489com pmid: 17242157
[47] WON S, HONG M, KIM Y, et al. Oleic acid: an efficient inhibitor of glucosyltransferase[J]. FEBS Letters, 2007, 581(25):4999-5002.
pmid: 17910959
[48] ZHENG C J, YOO J, LEE T, et al. Fatty acid synjournal is a target for antibacterial activity of unsaturated fatty acids[J]. FEBS Letters, 2005, 579(23):5157-5162.
doi: 10.1016/j.febslet.2005.08.028 pmid: 16146629
[49] GALBRAITH H, MILLER T B. Effect of long chain fatty acids on bacterial respiration and amino acid uptake[J]. Journal of Applied Bacteriology, 1973, 36(4):659-675.
[50] SCHONFELD P, WOJTCZAK L. Fatty acids as modulators of the cellular production of reactive oxygen species[J]. Free Radical Biology & Medicine, 2008, 45(3):231-241.
pmid: 18482593
[51] ADOLPH S. Cytotoxicity of diatom-derived oxylipins in organisms belonging to different phyla[J]. Journal of Experimental Biology, 2004, 207(17):2935-2946.
[1] GAO Xue, LI Zheng, GONG Jixian, LI Qiujin, LI Fengyan, ZHANG Jianfei. Research progress on new bio-antibacterial agents for textiles [J]. Journal of Textile Research, 2020, 41(02): 187-192.
[2] LI Zhenqun, XU Duo, WEI Chunyan, QIAN Yongfang, LÜ Lihua. Preparation of cotton stalk bast cellulose / graphene oxide fiber and its mechanical properties and adsorption capacity [J]. Journal of Textile Research, 2020, 41(01): 15-20.
[3] . Supercritical carbon dioxide extraction and bacterial resistance of flavones from apocynum venetum bast fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 71-76.
[4] . Softening treatment of cotton-straw bast fibers by oxalic acid [J]. Journal of Textile Research, 2016, 37(3): 21-24.
[5] . Antibacterial mechanism and performance of PLA/TP composed nanofiber membrane [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(8): 6-0.
[6] . Processing technology of Apocynum venetum stalk viscose fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(6): 26-29.
[7] . Combined mechanical and enzyme degumming process of cotton stald bast fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(2): 95-100.
[8] GU Yi-Shi, XIE Ling-Ling, SHAO Cai-Ying, GAO Wei-Dong, HUANG Dan. Preparation and antibacterial activity of TCC/PLA micro-fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(7): 1-5.
[9] . Antibacterial Property and Mechanism of Copper Alginate Fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(7): 13-16.
[10] LIU Lunjie;WU Dayang;WANG Tao. Research progress in antibacterial activity of chitosan and development of antimicrobial textile [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(7): 145-150.
[11] JI Yingchao;JIANG Fengqin;ZHAO Yuping. Selection of fiber-type hemp varieties [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(12): 19-22.
[12]
YANG Zhen; ZHANG Yugao; SHI Wei;FENG Xinxing;CHEN Jianyong. Influence of degumming methods on constituents and structure of cotton bast fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(01): 18-21.
[13] CHEN Zhongmin;HAO Xuefei;WU Dayang;RAO Jiajia;SHAO Fei. Preparation of silk fibroin peptide nano-scale particles and its antibacterial activity [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(7): 17-20.
[14] WANG Chaoyun;L Jiangnan;OUYANG Qing;YI Yongjian;ZHANG Yunxiong;TANG Jianwen. Trial manufacturing of environmental friendly bast fiber mulch film [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(3): 42-46.
[15] ZHANG Hua;FENG Jiahao;LI Jun. Effect of liquid ammonia/crosslinking treatment on hand feeling of bast fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(11): 80-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!