Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (10): 107-115.doi: 10.13475/j.fzxb.20191001309

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation of durable flame retardant polyacrylonitrile fabrics using UV-induced photo-grafting polymerization combined with sol-gel coating

WANG Yang1, CHENG Chunzu2, JIANG Li'na1, REN Yuanlin1,3(), GUO Yingbin1   

  1. 1. School of Textile Science and Technology, Tiangong University, Tianjin 300387, China
    2. China Textile Academy, Beijing 100025, China
    3. Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, Tianjin 300387, China
  • Received:2019-10-08 Revised:2020-06-22 Online:2020-10-15 Published:2020-10-27
  • Contact: REN Yuanlin E-mail:yuanlinr@163.com

Abstract:

In view of the poor flammability of polyacrylonitrile (PAN) and environmental problems caused by traditional flame retardant technologies, ultraviolet (UV)-induced photo-grafting polymerization combined with sol-gel technology was used to improve the flame resistance of PAN fabrics. A PAN fabric grafted with glycidyl methacrylate (GMA) was firstly prepared by means of UV-induced photo-grafting polymerization technology. The PAN-g-GMA was then coated with an organic-inorganic hybrid silica sol doped with phytic acid and urea to obtain a flame retardant PAN fabric. The thermogravimetric analysis and cone calorimeter test were used to characterize the thermal and combustion properties. The results show that the char residue of the FR-PAN is as high as 31.4%. In addition, the peak of heat release rateand the peak of smoke production rate of flame retardant PAN fabrics decreases from 374.4 kW/m2 and 0.06 m2/s to 186.7 kW/m2 and 0.03 m2/s, respectively. All the results indicate that the FR-PAN fabric performs excellently in flame retardancy and demonstrate good smoke suppression performance. The limiting oxygen index value of the flame retardant PAN fabric remains 27.3% after 30 times washing cycles, indicating good durable flame retardant performance.

Key words: polyacrylonitrile fabric, flame retardant fabric, photo-grafting polymerization, glycidyl methacrylate, sol-gel

CLC Number: 

  • TS156

Fig.1

Schematic of preparing FR-PAN fabric"

Fig.2

XRD spectra of PAN and modified PAN fabrics"

Fig.3

XPS spectra of PAN and modified PAN fabrics"

Tab.1

Chemical compositions of different fabrics %"

样品 C1s O1s N1s P2p Si2p
空白织物 81.93 10.86 7.21 0 0
接枝织物 75.30 18.07 3.36 0 0
阻燃织物 43.28 35.77 4.83 5.75 9.79
残炭 68.61 15.62 9.02 4.40 1.07

Fig.4

TG curves of PAN and modified PAN"

Fig.5

DTG curves of PAN and modified PAN"

Fig.6

DSC curves of PAN and modified PAN"

Fig.7

FT-IR spectra of PAN and modified PAN fabrics and char residue"

Fig.8

Infrared spectra of flame retardant samples at different temperatures"

Fig.9

Py-GC/MS spectrum of FR-PAN fabric"

Fig.10

Combustion curves of blank and flame retardant fabrics. (a) HRR; (b) THR; (c) SPR; (d) TSP"

Tab.2

Parameters of PAN and FR-PAN by cone calorimetry test"

样品 点燃时
间/s
热释放速
率峰值/
(kW·m-2)
到达热释
放速率峰值
时间/s
总热释
放量/
(MJ·m-2)
烟雾生成
速率峰值/
(m2·s-1)
总烟雾生
成量/m2
平均质量
损失率/
(g·s-1)
残炭
量/%
火灾增长
速率常数
空白织物 25 374.4 45 7.3 0.06 1.5 0.020 38.0 8.32
阻燃织物 42 186.7 60 7.0 0.03 0.7 0.008 66.4 3.11

Tab.3

LOI values of PAN fabric and FR-PAN fabric before and after washing%"

样品 0 5次 10次 20次 30次
空白织物 17.0 - - - -
阻燃织物 33.4 33.1 30.4 29.2 27.3

Fig.11

SEM images of different samples. (a) PAN fabric(×1 000); (b) PAN-g-GMA(×600); (c) FR-PAN(×800); (d) Burned FR-PAN(×800)"

[1] ALONGI J, COLLEONI C, ROSACE G, et al. Sol-gel derived architectures for enhancing cotton flame retardancy: effect of pure and phosphorus-doped silica phases[J]. Polymer Degradation and Stability, 2014,99:92-98.
doi: 10.1016/j.polymdegradstab.2013.11.020
[2] HRIBERNIK S, SMOLE M S, KLEINSCHEKA K S, BELEB M, et al. Flame retardant activity of SiO2-coated regenerated cellulose fibres[J]. Polymer Degradation and Stability, 2007,92:1957-1965.
doi: 10.1016/j.polymdegradstab.2007.08.010
[3] GRANCARIC A M, COLLEONI C, GUIDO E, et al. Thermal behaviour and flame retardancy of monoethanolamine-doped sol-gel coatings of cotton fabric[J]. Progress in Organic Coating, 2017,103:174-181.
doi: 10.1016/j.porgcoat.2016.10.035
[4] CHENG X, LIANG C, GUAN J, et al. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric[J]. Applied Surface Science, 2018,427:69-80.
doi: 10.1016/j.apsusc.2017.08.021
[5] REN Yuanlin, GU Yetong, ZENG Qian, et al. UV-induced surface grafting polymerizationfor preparing phosphorus-containing flame retardant polyacrylonitrile fabric[J]. European Polymer Journal, 2017,94:1-10.
doi: 10.1016/j.eurpolymj.2017.06.037
[6] REN Yuanlin, JIANG Lina, TIAN Tian, et al. Durable flame retardant polyacrylonitrile fabric via UV-induced grafting polymerization and surface chemical modi-fication[J]. RSC Advances, 2018,8:41389-41396.
doi: 10.1039/C8RA09005J
[7] REN Yuanlin, QIN Yiweni, LIU Xiaohui, et al. Flame-retardant polyacrylonitrile fabric prepared by ultraviolet-induced grafting with glycidyl methacrylate followed by ammoniation and phosphorylation[J]. Journal of Applied Polymer Science, 2018,135:46752.
doi: 10.1002/app.46752
[8] REN Yuanlin, ZHANG Yue, ZHAO Jieyun, et al. Phosphorus-doped organic-inorganic hybrid silicon coating for improving fire retardancy of polyacrylonitrile fabric[J]. Journal of Sol-Gel Science and Technology, 2017,82:280-288.
doi: 10.1007/s10971-016-4273-z
[9] REN Yuanlin, HUO Tongguo, QIN Yiwen. Preparation of flame retardant polyacrylonitrile fabric based on sol-gel and layer-by-layer assembly[J]. Fire Materials, 2018,11:483-496.
[10] XU G, ZHAO Y, HOU L, et al. A recyclable phosphinic acid functionalized polyacrylonitrile fiber for selective and efficient removal of Hg 2+ [J]. Chemical Engineering Journal, 2017,325:533-543.
doi: 10.1016/j.cej.2017.04.135
[11] ZHAO R, LI X, SUN B, et al. Preparation of phosphorylated polyacrylonitrile-based nanofiber mat and its application for heavy metal ion removal[J]. Chemical Engineering Journal, 2015,268:290-299.
doi: 10.1016/j.cej.2015.01.061
[12] DANELUTI A L M, MATOS J R. Study of thermal behavior of phytic acid[J]. Brazilian Journal of Pharmaceutical Sciences, 2013,49:275-283.
[13] MARTIN S C, LIGGAT J J, SNAPE C E. In situ NMR investigation into the thermal degradation and stabilisation of PAN[J]. Polymer Degradation and Stability, 2001,74:407-412.
doi: 10.1016/S0141-3910(01)00173-2
[14] SURIANARAYANAN M, VIJAVARAGHAVAN R, RAGHAVAN K V. Spectroscopic investigations of polyacrylonitrile thermal degradation[J]. Journal of Polymer Science Part A, 1998,36:2503-2512.
doi: 10.1002/(ISSN)1099-0518
[15] JOSEPH P, TRETSIAKOVA-MCNALLY S. Combustion behaviors of chemically modified polyacrylonitrile polymers containing phosphoryl-amino groups[J]. Polymer Degradation and Stability, 2012,97:2531-2535.
doi: 10.1016/j.polymdegradstab.2012.07.014
[16] GRASSIE N, MCGUCHAN R. Pyrolysis of polyacrylonitrile and related polymers:Ⅱ:the effect of sample preparation on the thermal behavior of polyacrylonitrile[J]. European Polymer Journal, 1971,7:1091-1104.
doi: 10.1016/0014-3057(71)90141-8
[17] JU A, GUANG S, XU H. Effect of comonomer structure on the stabilization and spinnability of polyacrylonitrile copolymers[J]. Carbon, 2013,54:323-335.
doi: 10.1016/j.carbon.2012.11.044
[18] ZHANG J, HORROCKS A R, HALL M E. The flammability of polyacrylonitrile and its copolymers. IV The flame retardant mechanism of ammonium polyphosphate[J]. Fire Materials, 2010,18:307-312.
doi: 10.1002/(ISSN)1099-1018
[19] REN Yuanlin, SU Qian, CHENG Bowen. Preparation and properties of halogen-free fire retardant acrylonitrile copolymer[J]. Chemical Journal of Chinese Universities, 2013,34:2216-2222.
[20] ZHANG Yue, REN Yuanlin, LIU Xiaohui, et al. Preparation of durable flame retardant PAN fabrics based on amidoximation and phosphorylation[J]. Applied Surface Science, 2018,428:395-403.
doi: 10.1016/j.apsusc.2017.09.155
[21] SOKKER H H, BADAWY S M, ZAYED E M, et al. Radiation-induced grafting of glycidyl methacrylate onto cotton fabric waste and its modification for anchoring hazardous wastes from their solutions[J]. Journal of Hazardous Materials, 2009,168:137-144.
doi: 10.1016/j.jhazmat.2009.02.039 pmid: 19297095
[22] RAJAEI M, WANG D Y, BHATTACHARYYA D. Combined effects of ammonium polyphosphate and talc on the fire and mechanical properties of epoxy/glass fabric composites[J]. Composites Part B: Engineering, 2017,113:381-390.
doi: 10.1016/j.compositesb.2017.01.039
[1] MA Junzhi, GE Hong, WANG Dong, FU Shaohai. Preparation and properties of sol-gel modified flame retardant viscose fiber [J]. Journal of Textile Research, 2021, 42(01): 10-15.
[2] LIU Jinxu, LIU Pengqing. Advances in flame-retardant surface treatments for textiles [J]. Journal of Textile Research, 2020, 41(10): 178-187.
[3] GAO Shan, LU Yehu, ZHANG Desuo, WU Lei, WANG Laili. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(04): 117-122.
[4] . Construction of mercapto-potassium persulfate surface-initiating system and application of grafting on feather surface [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 14-19.
[5] . Research progress of new processes of flame retardant fabrics coating [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 168-173.
[6] . Flame retardant finishing of silk fabrics with boron phosphate doped silica sol [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 96-101.
[7] . Study on flame retardant modification of ramie fabrics by ultraviolet grafting [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(4): 79-0.
[8] . Antistatic effect of PET fabrics finished with mixture of nano ZnO & Fe2O3 sol [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(4): 85-88.
[9] Yun-Jie YIN. Preparation and properties of hydrophobic-hydrophilic switchable coating via UV radiation on cotton fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(2): 120-124.
[10] . Preparation of nanoscale SiO2/PSSS composite particles by in-situ polymerization and their properties [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(11): 6-0.
[11] . Analysis of nano-particle size in fibroin membrane modified by nano TiO2 [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(11): 24-0.
[12] . Process for preparing Sb-doped tin dioxide film on surface of glass fiber by sol-gel method [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(11): 11-0.
[13] . Synthesis of nano-SiO2/PSt via miniemulsion polymerization and modification of polyacrylate sizing with it [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(11): 66-71.
[14] . Effect of annealing temperature on the conductive and optical properties of SnO2 thin film coated on glass fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(11): 37-41.
[15] YANG Hongxiang;ZHOU Cun;XU Jinyun. Preparation and property of epoxy based nano- SiO2/TiO2/polyimide hybrid enhanced size for carbon fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(5): 63-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!