Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (09): 39-44.doi: 10.13475/j.fzxb.20191001406

• Textile Engineering • Previous Articles     Next Articles

Computerized color modification algorithm for color spinning based on spectral reflectance

CHENG Lu1, CHEN Tingting2, CAO Jiqiang1, WANG Ying1, XIA Xin1()   

  1. 1. College of Textile and Clothing, Xinjiang University, Urumqi, Xinjiang 830046, China
    2. Department of Garment Engineering, Jiangxi Institute of Fashion Technology, Nanchang, Jiangxi 330201, China
  • Received:2019-10-08 Revised:2020-04-11 Online:2020-09-15 Published:2020-09-25
  • Contact: XIA Xin E-mail:xjxiaxin@163.com

Abstract:

This wor was carried out aiming to improve the color matching and proofing efficiency in color spinning. Based on the Friele optical model combined with the full spectrum matching color matching algorithm, which was applied in the actual production of a color spinning enterprise, the corresponding color correction algorithm was designed. Twenty-one standard samples were randomly determined, and 2-4 types of matching ratios were calculated and sampled from the existing 80 types of single-color cotton fibers. The average color difference of the 21 groups of samples was 2.36. The research results show that the average color difference of the fitting ratio is 1.215 after the first correction, in which the minimum color difference is 0.59; after the second correction of the ratio, the average color difference between the actual spinning samples and the standard samples drop to 0.67, and the color difference of each group is less than 1. It demonstrated that the designed color correction algorithm, which has high accuracy, is applicable for actual production.

Key words: color spinning, spectral reflectivity, computer color matching, color correction algorithm, color difference

CLC Number: 

  • TS104.5

Fig.1

Mixed color standard samples"

Tab.1

Actual color difference of first proofing"

试样编号 拟合配比/% 拟合色差 实际色差 试样编号 拟合配比/% 拟合色差 实际色差
1# 红08:1.56,紫06:59.50,
紫04:13.81,白01:25.13
0.34 2.49 11# 白01:6,蓝03:23.6,
蓝04:22.6,蓝08:47.8
0.29 1.93
2# 紫09:13.04,红02:16.74,
白01:70.22
0.07 2.22 12# 白01:79.3,蓝14:2.8,蓝08:47.9 0.86 3.09
3# 白02:87.99,红01:9.92,
红07:2.09
0.59 4.77 13# 白01:36,绿09:17.1,
绿14:9.6,蓝01:37.3
0.23 2.37
4# 紫11:22.03,紫02:34.28,
白01:13.35,紫06:30.35
0.27 2.31 14# 白01:55.8,蓝03:18.3,蓝04:21.2,绿05:4.7 0.15 1.42
5# 白01:46.70,蓝13:16.39,
紫01:36.91
0.82 2.56 15# 白01:83.4,蓝04:7.2,蓝05:2.6,蓝06:6.7 0.68 1.97
6# 白01:98.30,紫07:1.70 0.99 1.93 16# 白01:6.4,咖啡02:36,咖啡06:32,黑07:25.6 0.39 1.35
7# 白01:23.84,黄05:41.61,
黄07:34.55
0.67 2.77 17# 白01:13.89,
咖啡05:86.11
0.93 2.37
8# 白01:28,黄07:23,
黄10:2.8,绿11:46.2
1.50 3.11 18# 白01:86.9,咖啡03:10.5,
咖啡11:2.6
0.52 2.39
9# 白01:78.1,黄02:8.6,
黄05:13.3
0.16 1.59 19# 白01:37,绿13:25.1,
绿02:6.1,黑07:25.1,
咖啡05:6.8
0.15 1.88
10# 白01:13.6,黑07:2.6,
蓝11:29.8,蓝01:54.0
0.67 2.87 20# 白01:22.8,绿03:47.6,绿04:12.1,绿06:15.2,黄02:2.3 0.52 2.49
21# 白01:85.7,绿02:4.6,绿06:61,绿14:3.7 0.16 1.75

Fig.2

Actual color difference comparison"

Tab.3

Color correction result of actual spinning sample"

试样
编号
第1次修色 第2次修色 试样
编号
第1次修色 第2次修色
配比/% 实际色差 配比/% 实际色差 配比/% 实际色差 配比/% 实际色差
1# 紫06:63.75
紫04:13.62
白01:22.63
1.42 紫06:65.75
紫04:16.22
白01:18.03
0.81 11# 白01:6
蓝03:23.6
蓝04:22.6
蓝08:47.8
0.82
2# 紫10:32.44
紫09:6.85
红02:19.23
白01:25.13
1.55 紫10:43.74
紫09:8.26
红02:24.11
白01:23.89
0.41 12# 白01:79.3
蓝14:2.8
蓝08:17.9
1.38 白01:81.4
蓝14:5.6
蓝08:13
0.95
3# 白02:20.10
白01:76.10
红01:2.70
红07:1.09
1.69 白01:22.7
白02:73.2
红01:1.9
红07:2.2
0.7 13# 白01:36
绿09:17.1
绿14:9.6
蓝01:37.3
1.27 白01:26.2
绿09:25.6
绿14:8.5
蓝01:39.7
0.76
4# 紫11:15.01
紫02:36.32
白01:17.59
紫06:27.20
紫04:3.87
1.76 紫11:20.12
紫02:33.69
白01:17.2
紫06:19.64
紫04:9.35
0.91 14# 白01:55.8
蓝03:18.3
蓝04:21.2
绿05:4.7
0.79
5# 白01:43.77
蓝09:7.59
蓝13:7.87
紫01:40.77
0.92 白01:41.3
蓝09:5.15
蓝13:9.45
紫01:44.1
0.61 15# 白01:83.4
蓝04:7.2
蓝05:2.6
蓝06:6.7
0.90
6# 白01:98.35
紫07:1.65
0.59 16# 白01:6.4
咖啡02:36
咖啡06:32
黑07:25.6
1.16 白01:17.3
咖啡02:48.9
咖啡06:20.7
黑07:13.1
0.42
7# 白01:33.73
黄05:41.17
黄07:22.21
红03:2.89
1.22 白01:26.35
黄05:41.23
黄07:30.8
红03:1.62
0.70 17# 白01:13.89
咖啡05:86.11
1.49 白01:24.7
咖啡05:30.54
咖啡06:44.76
0.55
8# 白01:23.2
黄07:19.7
黄10:1.98
绿11:55.12
1.13 白01:28
黄07:23
黄10:2.8
绿11:46.2
0.27 18# 白01:86.9
咖啡03:10.5
咖啡11:2.6
0.97
9# 白01:87.4
黄02:0.1
黄05:12.6
0.95 19# 白01:37
绿13:25.1
绿02:6.1
黑07:25.1
咖啡05:6.8
1.30 白01:26.3
绿13:24.6
绿02:7.91
黑07:26
咖啡05:15.19
0.59
10# 白01:13.6
黑07:2.6
蓝11:29.8
蓝01:54.0
1.63 白01:10.4
黑07:7
蓝11:25.2
蓝01:57.4
0.84 20# 白01:22.8
绿03:47.6
绿04:12.1
绿06:15.2
黄02:2.3
1.83 白:30.79
绿03:24.5
绿04:22.3
绿06:12.2
黄02:10.21
0.87
21# 白01:85.7
绿02:4.6
绿06:61
绿14:3.7
0.75
[1] 刘建勇, 黄烨, 谭学强. 色纺纱的计算机配色研究进展[J]. 纺织学报, 2018, 39(11):182-190.
LIU Jianyong, HUANG Ye, TAN Xueqiang. Research progress of computer color matching for colored spun yarn[J]. Journal of Textile Research, 2018, 39(11):182-190.
[2] 白婧, 杨柳, 张毅, 等. 纯棉色纺纱配色中的Stearns-Noechel模型参数优化[J]. 纺织学报, 2018, 39(3):31-37.
BAI Jing, YANG Liu, ZHANG Yi, et al. Parameters optimization of Stearns-Noechel model color matching of cotton colored spun yarn[J]. Journal of Textile Research, 2018, 39(3):31-37.
[3] YANG Ruihua, XU Yaya, XIE Chunping, et al. Kubelka-Munk double constant theory of digital rotor spun color blended yarn[J]. Dyes and Pigments, 2019, 165:151-156.
[4] 杨瑞华, 徐亚亚, 韩瑞叶, 等. 多通道转杯纺混色纱的Friele配色模型[J]. 纺织学报, 2019, 40(3):44-48.
YANG Ruihua, XU Yaya, HAN Ruiye, et al. Friele color matching model of multi-channel rotor-spun mixed color yarn[J]. Journal of Textile Research, 2019, 40(3):44-48.
[5] WEI Chunao, WAN Xiaoxia, LI Junfeng. Color prediction model for pre-colored fiber blends based on modified Stearns-Noechel function[J]. Dyes and Pigments, 2017, 12:544-551.
[6] 杨瑞华, 韩瑞叶, 徐亚亚, 等. 数码转杯纺混色纱中有色纤维混合效果分析[J]. 纺织学报, 2018, 39(7):32-38.
YANG Ruihua, HAN Ruiye, XU Yaya, et al. Analysis on blending effect of colored fiber in digital rotor spun yarn[J]. Journal of Textile Research, 2018, 39(7):32-38.
[7] DUNTLEY S Q. The prediction and control of colored fiber blends by optical means[J]. American Dyestuff Reporter, 1941, 30:689-700.
[8] 李启正. 机织物的交织混色规律及颜色预测模型的研究[D]. 杭州:浙江理工大学, 2015:125-128.
LI Qizheng. Study on color mixing law and color prediction model for interwoven fabrics[D]. Hangzhou:Zhejiang Sci-Tech University, 2015: 125-128.
[9] FRIELE L F C. The application of color measurement in relation to fiber-blending[J]. Journal of the Textile Institute Proceeding, 1952, 43:604-611.
[10] BURLONE D A. Theoretical and practical aspects of selected fiber-blend color formulation functions[J]. Color Research and Application, 1984, 9:213-219.
[1] QIU Kebin, CHEN Weiguo, ZHOU Hua. Comparison of spectral imaging and spectrophotometry in fabric color measurement [J]. Journal of Textile Research, 2020, 41(11): 73-80.
[2] YING Shuangshuang, QIU Kebin, GUO Yufei, ZHOU Jiu, ZHOU Hua. Error optimization for measuring color chart data in textile color management [J]. Journal of Textile Research, 2020, 41(08): 74-80.
[3] ZHANG Ge, ZHOU Jian, WANG Lei, PAN Ruru, GAO Weidong. Influencing factors for fiber color measurement by spectrophotometer [J]. Journal of Textile Research, 2020, 41(04): 72-77.
[4] .  Coloration characteristics and influence factors of colored spun fabric based on primary-color fibers blending [J]. Journal of Textile Research, 2018, 39(10): 38-43.
[5] . Color difference measurement of dyed fabrics using digital camera  [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 77-82.
[6] . Prediction of color blending effect of digital rotor yarn based on Kubelka-Munk double constant theory [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 36-41.
[7] . Parameter optimizing of Stearns-Noechel model in color matching of cotton colored spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 31-37.
[8] . Color fiber mixing formula algorithm based on Friele model [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 33-37.
[9] . Color difference comparison of colored spun yarns by different spinning processes [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 29-34.
[10] . Comparative research on tradetional pouch difference between North and South regions [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 121-125.
[11] . Application of Stearns-Noechel model on color blending of naturally colored cotton [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(01): 93-97.
[12] . Backed weave image segmentation based on smoothing filter and watershed algorithm [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 38-42.
[13] . Fabric dyeing formulation prediction algorithm based on particle filter [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(8): 64-0.
[14] . Computer color separation of natural green cocoons [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(4): 121-0.
[15] . Preparation and antimicrobial property of silver-loaded color spun rayon fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(1): 91-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!