Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (01): 167-174.doi: 10.13475/j.fzxb.20191002508
• Comprehensive Review • Previous Articles Next Articles
CHEN Yunbo1, ZHU Xiangyu1, LI Xiang1, YU Hong2, LI Weidong2, XU Hong1, SUI Xiaofeng1()
CLC Number:
[1] | 侯翠芳. 智能调温立体结构机织物设计[J]. 棉纺织技术, 2010,38(9):36-38. |
HOU Cuifang. Design of intelligent temperature adjusting three-dimensional structure woven fabric[J]. Cotton Textile Technology, 2010,38(9):36-38. | |
[2] | 阎若思, 王瑞, 刘星. 相变材料微胶囊在蓄热调温智能纺织品中的应用[J]. 纺织学报, 2014,35(9):155-164. |
YAN Ruosi, WANG Rui, LIU Xing. Application of microencapsulated phase-change materials in intelligent heat-storage and thermo-regulated textile[J]. Journal of Textile Research, 2014,35(9):155-164. | |
[3] | 弋梦梦, 廖喜林, 耿长军, 等. 智能温控纺织品研究进展及应用[J]. 天津纺织科技, 2018,225(3):79-81. |
YI Mengmeng, LIAO Xilin, GENG Changjun, et al. Research progress and application of intelligent temperature control textiles[J]. Tianjin Textile Science & Technology, 2018,225(3):79-81. | |
[4] | IQBAL K, KHAN A, SUN D, et al. Phase change materials, their synjournal and application in textiles:a review[J]. Journal of The Textile Institute, 2019,110(4):625-638. |
[5] | MONDAL S. Phase change materials for smart textiles: an overview[J]. Applied Thermal Engineering, 2008,28(11/12):1536-1550. |
[6] | SONG S, ZHAO T, QIU F, et al. Natural microtubule encapsulated phase change material with high thermal energy storage capacity[J]. Energy, 2019,172:1144-1150. |
[7] |
SONG S, ZHAO T, ZHU W, et al. Natural microtubule-encapsulated phase-change material with simultaneously high latent heat capacity and enhanced thermal conductivity[J]. ACS Applied Materials & Interfaces, 2019,11(23):20828-20837.
doi: 10.1021/acsami.9b04523 pmid: 31117448 |
[8] | VIGO T L, FROST C M, BRUNO J S, et al. Temperature adaptable textile fibers and method of preparing same: US 4851291[P]. 1989 -07-25. |
[9] |
VIGO T L, FROST C M. Temperature adaptable hollow fibers containing polyethylene glycols[J]. Journal of Coated Fabrics, 1983,12(4):243-254.
doi: 10.1177/152808378301200405 |
[10] | 李发学, 张广平, 俞建勇. 三羟甲基乙烷/新戊二醇二元体系填充涤纶中空纤维的研究[J]. 东华大学学报(自然科学版), 2003,29(6):15-17. |
LI Faxue, ZHANG Guangping, YU Jianyong. Researching for terephthalate/neopentyl glycol binary system was filled with polyester hollow fiber[J]. Journal of Donghua Univer-sity(Natural Science), 2003,29(6):15-17. | |
[11] |
LUO D, WEI F, SHAO H, et al. Shape stabilization, thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/MWCNTs/PP hollow fiber membrane composite phase change materials[J]. Journal of Materials Science, 2018,53(22):15500-15513.
doi: 10.1007/s10853-018-2722-5 |
[12] |
AN J R, LIANG W D, MU P, et al. Novel sugar alcohol/carbonized kapok fiber composites as form-stable phase-change materials with exceptionally high latent heat for thermal energy storage[J]. ACS Omega, 2019,4(3):4848-4855.
doi: 10.1021/acsomega.8b03373 pmid: 31459669 |
[13] | 赵亮. 再生蚕丝储热调温材料的制备与性能研究[D]. 北京:清华大学, 2017: 20-35. |
ZHAO Liang. Preparation and characterization of regenerated silk composite for thermal regulation[D]. Beijing: Tsinghua University, 2017: 20-35. | |
[14] | HARTMANN M, WORLEY J B, NORTH M. Cellulosic fibers having enhanced reversible thermal properties and methods of forming thereof:US 0272863[P]. 2015 -10-27. |
[15] | 李昌垒, 刘长军, 马君志, 等. 一种光热转换、蓄热调温纤维素纤维及其制备方法: 201910700950.8 [P]. 2019 -07-31. |
LI Changlei, LIU Changjun, MA Junzhi, et al. The preparation method thereof photothermal conversion, heat storage and temperature regulation cellulose fiber: 201910700950.8 [P]. 2019 -07-31. | |
[16] | 闫丽佳. 相变材料微胶囊的制备及其应用[D]. 北京: 北京服装学院, 2010: 5-11. |
YAN Lijia. Preparation and application of phase change material microcapsules[D]. Beijing: Beijing Institute of Fashion Technology, 2010: 5-11. | |
[17] |
IQBAL K, SUN D. Development of thermo-regulating polypropylene fibre containing microencapsulated phase change materials[J]. Renewable Energy, 2014,71:473-479.
doi: 10.1016/j.renene.2014.05.063 |
[18] | LI W, MA Y J, TANG X F, et al. Composition and characterization of thermoregulated fiber containing acrylic-based copolymer microencapsulated phase-change mater-ials (MicroPCMs)[J]. Industrial & Engineering Chemistry Research, 2014,53(13):5413-5420. |
[19] |
GAO X Y, HAN N, ZHANG X X, et al. Melt-processable acrylonitrile-methyl acrylate copolymers and melt-spun fibers containing microPCMs[J]. Journal of Materials Science, 2009,44(21):5877-5884.
doi: 10.1007/s10853-009-3830-z |
[20] | 马露, 杨雪珂, 高倩钰, 等. 静电纺相变纤维的制备及性能表征[J]. 国际纺织导报, 2019,46(4):4-8. |
MA Lu, YANG Xueke, GAO Qianyu, et al. Preparation and chara cterization of phase change fiber by electrospinning[J]. Melliand China, 2019,46(4):4-8. | |
[21] |
LI J, WANG B, YE G, et al. Study of synthesizing energy storage microcapsules in PVA spinning solution and thermal regulating fibers prepared by this solution[J]. Fibers and Polymers, 2013,14(4):537-541.
doi: 10.1007/s12221-013-0537-1 |
[22] | 于海飞. 相变微胶囊聚丙烯腈纤维的制备及性能研究[D]. 大连: 大连工业大学, 2011: 41-54. |
YU Haifei. The study on preparation and properties of microencapsulated phase change materials/PVA fiber[D]. Dalian: Dalian Polytechnic University, 2011: 41-54. | |
[23] | 吴超, 邹黎明, 张绳凯, 等. PA6/CPCM储能调温纤维的制备及表征[J]. 合成纤维工业, 2015(2):14-18. |
WU Chao, ZOU Liming, ZHANG Shengkai, et al. Preparation and characterization of PA6/CPCM energy storage and temperature regulating fiber[J]. China Synthetic Fiber Industry, 2015(2):14-18. | |
[24] | 张兴祥, 王学晨, 胡灵, 等. PP/PEG蓄热调温复合纤维的纺丝与性能[J]. 天津工业大学学报, 1999,18(1):1-4. |
ZHANG Xingxiang, WANG Xuechen, HU Ling, et al. Spinning and properties of PP/PEG composite fibers for heat storaging and thermoregulating[J]. Journal of Tiangong University, 1999,18(1):1-4. | |
[25] | 张兴祥, 王学晨, 牛建津, 等. 蓄热调温纤维的纺制及其性能研究[J]. 天津工业大学学报, 2005,27(2):1-5. |
ZHANG Xingxiang, WANG Xuechen, NIU Jianjin, et al. Research on spinning and properties of thermo-regulated fibers[J]. Journal of Tiangong University, 2005,27(2):1-5 | |
[26] | ZHANG X, WANG X, ZHANG H, et al. Effect of phase change material content on properties of heat-storage and thermo-regulated fibres nonwoven[J]. Indian Journal of Fibre & Textile Research, 2003,28(3):265-269. |
[27] | 花建兵, 邹黎明, 倪建华, 等. CPCM/PE蓄热调温纤维的制备及其结构与性能研究[J]. 合成纤维工业, 2016(6):11-15. |
HUA Jianbing, ZOU Liming, NI Jianhua, et al. Preparation, structure and properties of CPCM/PE thermo-regulated fiber[J]. China Synthetic Fiber Industry, 2016 (6):11-15. | |
[28] |
CAI Y, KE H, DONG J, et al. Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials[J]. Applied Energy, 2011,88(6):2106-2112.
doi: 10.1016/j.apenergy.2010.12.071 |
[29] | 徐刚, 陆源, 肖秀娣, 等. 一种利用同轴静电纺丝技术制备核壳结构的相变储热纤维膜的方法: 201810298468.1[P]. 2018 -09-25. |
XU Gang, LU Yuan, XIAO Xiuti, et al. A method for preparing a phase change heat storage fiber membrane with core shell structure by coaxial electrostatic spinning technology: 201810298468.1[P]. 2018 -09-25. | |
[30] |
KE H. Preparation of electrospun LA-PA/PET/Ag form-stable phase change composite fibers with improved thermal energy storage and retrieval rates via electrospinning and followed by UV irradiation photoreduction method[J]. Fibers and Polymers, 2016,17(8):1198-1205.
doi: 10.1007/s12221-016-6456-1 |
[31] |
LU Y, XIAO X, FU J, et al. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning[J]. Chemical Engineering Journal, 2019,355:532-539.
doi: 10.1016/j.cej.2018.08.189 |
[32] |
MCCANN J T, MARQUEZ M, XIA Y. Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers[J]. Nano Letters, 2006,6(12):2868-2872.
pmid: 17163721 |
[33] |
CAI Y B, XU X L, GAO C T, et al. Effects of carbon nanotubes on morphological structure, thermal and flammability properties of electrospun composite fibers consisting of laurie acid and polyamide 6 as thermal energy storage materials[J]. Fibers and Polymers, 2012,13(7):837-845.
doi: 10.1007/s12221-012-0837-x |
[34] |
CAI Y, GAO C, XU X, et al. Electrospun ultrafine composite fibers consisting of lauric acid and polyamide 6 as form-stable phase change materials for storage and retrieval of solar thermal energy[J]. Solar Energy Materials and Solar Cells, 2012,103:53-61.
doi: 10.1016/j.solmat.2012.04.031 |
[35] |
ESMAEILZADEH Z, REZAEI B, SHOUSHTARI A M, et al. Enhancing the thermal characteristics of shape-stabilized phase change nanocomposite nanofibers by incorporation of multiwalled carbon nanotubes within the nanofibrous structure[J]. Advances in Polymer Technology, 2018,37(1):185-193.
doi: 10.1002/adv.21655 |
[36] |
SEIFPOOR M, NOURI M, MOKHTARI J. Thermo-regulating nanofibers based on nylon 6,6/polyethylene glycol blend[J]. Fibers and Polymers, 2011,12(6):706-714.
doi: 10.1007/s12221-011-0706-z |
[37] |
CHEN C, WANG L, HUANG Y. Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite[J]. Polymer, 2007,48(18):5202-5207.
doi: 10.1016/j.polymer.2007.06.069 |
[38] |
KE H, LI D, ZHANG H, et al. Electrospun form-stable phase change composite nanofibers consisting of capric acid-based binary fatty acid eutectics and polyethy-lene[J]. Fibers and Polymers, 2013,14(1):89-99.
doi: 10.1007/s12221-013-0089-4 |
[39] |
CAI Y, LIU M, SONG X, et al. A form-stable phase change material made with a cellulose acetate nanofibrous mat from bicomponent electrospinning and incorporated capric-myristic-stearic acid ternary eutectic mixture for thermal energy storage/retrieval[J]. RSC Advances, 2015,5(102):84245-84251.
doi: 10.1039/C5RA14876F |
[40] |
ZONG X, CAI Y, SUN G, et al. Fabrication and characterization of electrospun SiO2 nanofibers absorbed with fatty acid eutectics for thermal energy storage/retrieval[J]. Solar Energy Materials and Solar Cells, 2015,132:183-190.
doi: 10.1016/j.solmat.2014.08.030 |
[41] | 张焕芝, 季蓉, 夏永鹏, 等. 一种复合相变纳米纤维材料及其制备方法: 201810772149.X [P]. 2018 -11-06. |
ZHANG Huanzhi, JI Rong, XIA Yongpeng, et al. Preparation method for a composite phase change nanofiber material: 201810772149.X [P]. 2018 -11-06. | |
[42] |
CAI Y, XU X, GAO C, et al. Structural morphology and thermal performance of composite phase change materials consisting of capric acid series fatty acid eutectics and electrospun polyamide 6 nanofibers for thermal energy storage[J]. Materials Letters, 2012,89:43-46.
doi: 10.1016/j.matlet.2012.08.067 |
[43] |
SHI Q, LIU Z, JIN X, et al. Electrospun fibers based on polyvinyl pyrrolidone/Eu-polyethylene glycol as phase change luminescence materials[J]. Materials Letters, 2015,147:113-115.
doi: 10.1016/j.matlet.2015.02.040 |
[44] |
REINERTSEN R E, FAEREVIK H, HOLBO K, et al. Optimizing the performance of phase-change materials in personal protective clothing systems[J]. International Journal of Occupational Safety and Ergonomics, 2008,14(1):43-53.
doi: 10.1080/10803548.2008.11076746 pmid: 18394325 |
[45] |
LI W, ZHANG X X, WANG X C, et al. Fabrication and morphological characterization of microencapsulated phase change materials (MicroPCMs) and macrocapsules containing MicroPCMs for thermal energy storage[J]. Energy, 2012,38(1):249-254.
doi: 10.1016/j.energy.2011.12.005 |
[46] | 兰培强, 夏抒. 一种相变恒温床垫: 201510318017.6 [P]. 2015 -11-11. |
LAN Peiqiang, XIA Zhu. A phase change thermostatic mattress: 201510318017.6 [P]. 2015 -11-11. | |
[47] |
ITANI M, GHADDAR N, OUAHRANI D, et al. An optimal two-bout strategy with phase change material cooling vests to improve comfort in hot environment[J]. Journal of Thermal Biology, 2018,72:10-25.
doi: 10.1016/j.jtherbio.2017.12.005 pmid: 29496002 |
[48] |
ITANI M, GHADDAR N, GHALI K. Innovative PCM-desiccant packet to provide dry microclimate and improve performance of cooling vest in hot environ-ment[J]. Energy Conversion and Management, 2017,140:218-227.
doi: 10.1016/j.enconman.2017.03.011 |
[49] | OUAHRANI D, ITANI M, GHADDAR N, et al. Experimental study on using PCMs of different melting temperatures in one cooling vest to reduce its weight and improve comfort[J]. Energy and Buildings, 2017,155:533-545. |
[50] | WAN X, WANG F, UDAYRAJ. Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans[J]. International Journal of Heat and Mass Transfer, 2018,126:636-648. |
[51] | 王学晨, 张兴祥, 牛建津. 一种调温服装: 200420029865.2[P]. 2005 -09-21. |
WANG Xuechen, ZHANG Xingxiang, NIU Jianjin. A temperature-regulating garment: 200420029865.2[P]. 2005 -09-21. | |
[52] |
GAO C, KUKLANE K, HOLMR I. Cooling vests with phase change materials: the effects of melting temperature on heat strain alleviation in an extremely hot environment[J]. European Journal of Applied Physiology, 2011,111(6):1207-1216.
doi: 10.1007/s00421-010-1748-4 pmid: 21127896 |
[53] |
HOUSE J R, LUNT H C, TAYLOR R, et al. The impact of a phase-change cooling vest on heat strain and the effect of different cooling pack melting tempera-tures[J]. European Journal of Applied Physiology, 2013,113(5):1223-1231.
doi: 10.1007/s00421-012-2534-2 pmid: 23160652 |
[54] | AKSOY S A, ALKAN C, TOZUM M S, et al. Preparation and textile application of poly(methyl methacrylate-co-methacrylic acid)/n-octadecane and n-eicosane microcapsules[J]. Journal of The Textile Institute, 2017,108(1):30-41. |
[55] | GENC E, AKSOY S A. Fabrication of microencapsulated PCMs with nanoclay doped chitosan shell and their application to cotton fabric[J]. Tekstil Ve Konfeksiyon, 2016,26(2):180-188. |
[56] | DEMIRBAG S, AKSOY S A. Encapsulation of phase change materials by complex coacervation to improve thermal performances and flame retardant properties of the cotton fabrics[J]. Fibers and Polymers, 2016,17(3):408-417. |
[57] | JANTANG S, CHAIYASAT P. High performance poly(methyl methacrylate-acrylic acid-divinylbenzene) microcapsule encapsulated heat storage material for thermoregulating textiles[J]. Fibers and Polymers, 2018,19(10):2039-2048. |
[58] | SÁNCHEZ P, SÁNCHEZ-FERNANDEZ M V, ROMERO A, et al. Development of thermo-regulating textiles using paraffin wax microcapsules[J]. Thermochimica Acta, 2010,498(1/2):16-21. |
[59] | IQBAL K, SUN D. Synjournal of nanoencapsulated Glauber's salt using PMMA shell and its application on cotton for thermoregulating effect[J]. Cellulose, 2018,25(3):2103-2113. |
[60] | ZHANG G Q, CAI C W, ZHU G C, et al. Preparation and properties of high thermostability phase-change material microcapsules [C]//LI Y, GAO L, XU W L. International Symposium of Textile Bioengineering and Informatics. Hong Kong: Textile Bioengineering & Informatics Society Ltd, 2018: 840-847. |
[61] | ALAY S, GODE F, ALKAN C. Synjournal and thermal properties of poly(n-butyl acrylate)/n-hexadecane microcapsules using different cross-linkers and their application to textile fabrics[J]. Journal of Applied Polymer Science, 2011,120(5):2821-2829. |
[62] | NEJMAN A, CIESLAK M, GAJDZICKI B, et al. Methods of PCM microcapsules application and the thermal properties of modified knitted fabric[J]. Thermochimica Acta, 2014,589:158-163. |
[63] | KARASZEWSKA A, KAMINSKA I, NEJMAN A, et al. Thermal-regulation of nonwoven fabrics by microcapsules of n-eicosane coated with a polysiloxane elastomer[J]. Materials Chemistry and Physics, 2019,226:204-213. |
[64] | 胡雪丽, 朱剑, 宫怀瑞, 等.一种调温纺织品及其生产方法: 201911000034[P]. 2019 -10-21. |
HU Xueli, ZHU Jian, GONG Huairui, et al. The production method thereof temperature-regulating textile: 201911000034[P]. 2019 -10-21. | |
[65] | 周岚, 刘国金, 张国庆, 等.一种蓄热调温喷印液及数码喷印制备蓄热调温纺织品的方法: 201910276152[P]. 2019 -04-08. |
ZHOU Lan, LIU Guojin, ZHANG Guoqing, et al. A method for preparing temperature-regulating printing fluid and temperature-regulating textiles by digital printing: 201910276152[P]. 2019 -04-08. | |
[66] | 丁爱军, 肖吕明, 高杰, 等. 一种智能调温纺织品及其制备方法: 201410407505X[P]. 2014 -11-19. |
DING Aijun, XIAO Lvming, GAO Jie, et al. The invention relates to an intelligent temperature-regulating textile and a preparation method: 201410407505X[P]. 2014 -11-19. | |
[67] | 王艳秋, 金万祥, 缪伟伟, 等. 聚乙二醇/涤纶接枝共聚固-固相转变贮热材料[J]. 应用化工, 2009,38(1):28-31. |
WANG Yanqiu, JIN Wanxiang, LIAO Weiwei, et al. Polyethylene glycol-polyester grafts solid-solid phase change storage energy materials[J]. Applied Chemical Industry, 2009,38(1):28-31. | |
[68] | KURU A, AKSOY S A. Cellulose-PEG grafts from cotton waste in thermo-regulating textiles[J]. Textile Research Journal, 2014,84(4):337-346. |
[69] | GOK O, ALKAN C, KONUKLU Y. Developing a poly(ethylene glycol)/cellulose phase change reactive composite for cooling application[J]. Solar Energy Materials and Solar Cells, 2019,191:345-349. |
[70] | LI Z, HE W, XU J, et al. Preparation and characterization of in situ grafted/crosslinked polyethylene glycol/polyvinyl alcohol composite thermal regulating fiber[J]. Solar Energy Materials and Solar Cells, 2015,140:193-201. |
[71] | KUMAR A, KULKARNI P S, SAMUI A B. Polyethylene glycol grafted cotton as phase change polymer[J]. Cellulose, 2014,21(1):685-696. |
[72] | BENMOUSSA D, MOLNAR K, HANNACHE H, et al. Novel thermo-regulating comfort textile based on poly(allyl ethylene diamine)/n-hexadecane microcapsules grafted onto cotton fabric[J]. Advances in Polymer Technology, 2018,37(2):419-428. |
[73] | BADULESCU R, VIVOD V, JAUSOVEC D, et al. Grafting of ethylcellulose microcapsules onto cotton fibers[J]. Carbohydrate Polymers, 2008,71(1):85-91. |
|