Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (06): 14-20.doi: 10.13475/j.fzxb.20191002807

• Fiber Materials • Previous Articles     Next Articles

Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes

JIA Lin1(), WANG Xixian1, TAO Wenjuan1, ZHANG Haixia1, QIN Xiaohong1,2   

  1. 1. College of Textiles, Henan University of Engineering, Zhengzhou, Henan 450007, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2019-10-14 Revised:2020-03-10 Online:2020-06-15 Published:2020-06-28

Abstract:

In order to study and analyze the effects of different antibacterial agents on polyacrylonitrile (PAN) antibacterial nanofibers and further develop functional nanofiber textiles, PAN/triclosan (PAN/TCS) and PAN/TiO2 antibacterial composite nanofiber membranes were prepared through electrospinning technology, and their morphologies and properties were tested and analyzed using scan electron microscope, and Fourier infrared spectrometer. The results show that compared with pure PAN nanofiber membrane, the diameter of PAN/TCS and PAN/TiO2 antibacterial nanofiber membrane decreases by 39%-71%, and the tensile strength increase by 12%-88%. PAN/TCS composite nanofibers show a bacteriostatic zone of more than 1 mm for Staphylococcus aureus and Escherichia coli. However, no bacterial inhibition zone is found in PAN/TiO2 composite nanofibers because TiO2 is a non-soluble antibacterial agent. The antibacterial rates of PAN/TCS and PAN/TiO2 composite nanofibers on Staphylococcus aureus and Escherichia coli reach more than 91.98%, and the inhibitory rates increase when the mass fractions of triclosan and TiO2.

Key words: polyacrylonitrile, nanofiber, triclosan, TiO2, electrospinning, antibacterial property

CLC Number: 

  • TS102.6

Fig.1

SEM images of PAN antibacterial composite nanofibers(×10 000)"

Tab.1

Average diameter and standard deviation of PAN antibacterial composite nanofibersnm"

样品编号 直径平均值 直径标准差
1# 887.20 68.40
2# 539.15 45.34
3# 467.95 36.73
4# 261.50 49.24
5# 322.40 70.56

Fig.2

FT-IR spectra of PAN antibacterial composite nanofibers"

Fig.3

Stress-strain curves of electrospun antibacterial composite nanofibrous membranes"

Fig.4

Qualitative test results of aluminum foil and PAN antibacterial nanofibers on Escherichia coli (a) and Staphylococcus aureus(b)"

Tab.2

Width of antibacterial composite nanofibers on Escherichia coli and Staphylococcus aureusmm"

样品编号 大肠杆菌 金黄色葡萄球菌
1#
2# 5.13 8.75
3# 7.48 10.73
4#
5#

Fig.5

Quantitative test results of PAN antibacterial nanofibers on Escherichia coli. (a) 2#; (b) 3#; (c) 4#; (d) 5#; (e) Controlled sample"

Fig.6

Quantitative test results of PAN antibacterial nanofibers on Staphylococcus aureus. (a) 2#;(b) 3#; (c) 4#; (d) 5#; (e) Controlled sample"

Tab.3

Inhibition rate of PAN composite nanofibers on Escherichia coli and Staphylococcus aureus%"

样品编号 对大肠杆菌抑菌率 对金黄色葡萄球菌抑菌率
2# 99.99 99.99
3# 99.99 99.99
4# 91.98 94.73
5# 97.25 99.18
[1] 黄亮. 病原微生物对人类的威胁[J]. 生物化工, 2019,5(4):135-140.
HUANG Liang. The threat of pathogenic microorganisms to humans[J]. Biological Chemical Engineering, 2019,5(4):135-140.
[2] KHAN M Z, BAHETI V, ASHRAF M. Development of UV protective, superhydrophobic and antibacterial textiles using ZnO and TiO2 nanoparticles[J]. Fibers and Polymers, 2018,19(8):1647-1654.
[3] GAO B J, ZHANG X, WANG J. Preparation and antibacterial characteristic of water-insoluble antibacterial material QPEI/SiO2[J]. Journal of Materials Science(Materials in Medicine), 2008,19:3021-3028.
[4] 陈杰. 银系抗菌ABS塑料的制备及性能研究[D]. 合肥: 合肥工业大学, 2012: 4-6.
CHEN Jie. Fabrication and property of Ag-doped antibacterial ABS plastic[D]. Hefei: Hefei University of Technology, 2012: 4-6.
[5] GOUDARZI V, IMAN S G, AMIN B Q. Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: characterization[J]. International Journal of Biological Macromolecules, 2017,95:306-313.
pmid: 27884670
[6] MOHAMMAD J H, KATHARINA M F, ASHKARRAN A A, et al. Anti-bacterial properties of nano-particles[J]. Trends Biotechnol, 2012,30(10):499-511.
pmid: 22884769
[7] MURANYI P, SCHRAML C, WUNDERLICH J. Antimicrobial efficiency of titanium dioxide-coated surfaces[J]. Journal of Applied Microbiology, 2010,108(6):1966-1973.
pmid: 19886892
[8] 贾琳, 孔繁荣, 王西贤, 等. 聚丙烯腈三氯生纳米级纤维的拉伸性能研究[J]. 棉纺织技术, 2017,45(7):52-55.
JIA Lin, KONG Fanrong, WANG Xixian, et al. Tensile property study of polyacrylonitrile triclosan nano-fiber[J]. Cotton Textile Technology, 2017,45(7):52-55.
[9] 贾琳, 王西贤, 张海霞, 等. 聚丙烯腈/二氧化钛纳米纤维的紫外线防护性能[J]. 纺织学报, 2017,38(7):18-22.
JIA Lin, WANG Xixian, ZHANG Haixia, et al. Ultraviolet protective properties of polyacrylonitrile/TiO2 nanofiber[J]. Journal of Textile Research, 2017,38(7):18-22.
[10] ZHU Z, ZHANG Y B, SHANG Y L, et al. Electrospun nanofibers containing TiO2 for the photocatalytic degradation of ethylene and delaying postharvest ripening of bananas[J]. Food and Bioprocess Technology, 2019,12:281-287
[11] PATEL S, HOTA G. Adsorptive removal of malachite green dye by functionalized electrospun PAN nanofibers membrane[J]. Fibers and Polymers, 2014,15(11):2272-2282.
[12] 张倩. 具有不同释放效果的三氯生抗菌棉纱敷料的制备探索[D]. 上海: 东华大学, 2016: 25-27.
ZHANG Qian. Study on the preparation of triclosan containing antibacterial cotton dressing with different release effects[D]. Shanghai: Donghua University, 2016: 25-27.
[13] 吕晓东. 三氯生杭菌活性骨水泥的体外抑菌实验及生物力学性能的实验研究[D]. 北京:解放军总医院军医进修学院, 2010: 9-10.
LÜ Xiaodong. Bone cement loading with triclosan in vitro: the antibacterial activity and biomechanical properties[D]. Beijing: Chinese PLA General Hospital & Postgraduate Medical School, 2010: 9-10.
[14] 杨秀山. 细菌细胞壁的结构[J]. 微生物学通报, 1982,9(2):43-47.
YANG Xiushan. The structure of a bacterial cell wall[J]. Microbiology China, 1982,9(2):43-47.
[15] 朱孝明, 代子荐, 赵奕, 等. 改性二氧化钛/纺黏-熔喷非织造抗菌复合滤材的制备及性能[J]. 东华大学学报(自然科学版), 2019,45(2):196-203.
ZHU Xiaoming, DAI Zijian, ZHAO Yi, et al. Fabrication and properties of modified TiO2/spun-bonded and melt-blown nonwoven antibacterial composite filter[J]. Journal of Donghua University(Natural Science), 2019,45(2):196-203.
[1] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[2] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[3] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[4] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[5] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan / polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[6] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride / FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[7] LI Junyu, JIANG Peiqing, ZHANG Wenqi, LI Wenbin. Effect of atomic layer deposition technology on functionalization of cellulose membrane [J]. Journal of Textile Research, 2020, 41(12): 26-30.
[8] SUN Qian, KAN Yan, LI Xiaoqiang, GAO Dekang. Preparation and performance of colorimetric humidity sensor using polyacrylonitrile/CoCl2 nanofibers [J]. Journal of Textile Research, 2020, 41(11): 27-33.
[9] WANG Liyuan, KANG Weimin, ZHUANG Xupin, JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[10] MA Yue, GUO Jing, YIN Juhui, ZHAO Miao, GONG Yumei. Preparation and characterization of cellulose/dialdehyde cellulose/Antarctic krill protein antibacterial fibers [J]. Journal of Textile Research, 2020, 41(11): 34-40.
[11] JIANG Xingmao, LIU Qi, GUO Lin. Structure and antibacterial properties of silica coated silver-copper nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 102-108.
[12] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
[13] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[14] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[15] WANG Yang, CHENG Chunzu, JIANG Li'na, REN Yuanlin, GUO Yingbin. Preparation of durable flame retardant polyacrylonitrile fabrics using UV-induced photo-grafting polymerization combined with sol-gel coating [J]. Journal of Textile Research, 2020, 41(10): 107-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!