Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (09): 95-101.doi: 10.13475/j.fzxb.20191003007

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Molecular dynamics simulation of solubility of C.I. Disperse Brown 19 in supercritical CO2 and water

WANG Chunyi1,2, WU Wei1,2, WANG Jian3, XU Hong1,2,4, MAO Zhiping1,2,4,5()   

  1. 1. Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
    3. Jifa Group Co., Ltd., Qingdao, Shandong 266000, China
    4. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
    5. Anoky Group Co., Ltd., Shanghai 201703, China
  • Received:2019-10-15 Revised:2020-04-30 Online:2020-09-15 Published:2020-09-25
  • Contact: MAO Zhiping E-mail:zhpmao@dhu.edu.cn

Abstract:

In order to explore the solubility differences of disperse dyes in supercritical CO2 and water under their dyeing conditions, the solvation free energy and the binding free energy of C.I. Disperse Brown 19 in these two solvents were syudied, based on the molecular dynamics simulation, using thermodynamic integration method respectively, and the weak interaction between dye molecules and solvent molecules was examined by average noncovalent interaction method. The results showed that the absolute values of free energy of C.I. Disperse Brown 19 dye molecules in supercritical CO2 (24 MPa, 130 ℃) and water (0.25 MPa, 130 ℃) were small, whereas the absolute value of solvation free energy in supercritical CO2 was slightly less than that in water, and the absolute value of binding free energy was slightly greater than in water. The interactions (van der Waals force) between C.I. Disperse Brown 19 dye molecules and supercritical CO2 molecules and water molecules were both weak and unstable, and,the interactions between the dye molecule and the supercritical CO2 molecules were more unstable than that with water molecules.

Key words: disperse dyes, supercritical CO2, free energy, solubility, molecular dynamics simulation

CLC Number: 

  • O647.9

Fig.1

Chemical structure of C.I. Disperse Brown 19"

Tab.1

Simulation settings for free energy calculations"

体系 溶剂 染料
分子
个数
溶剂
分子
个数
盒子
边长/nm
压力/
MPa
温度/
超临界CO2 1 1 356 3.5 24.00 130
H2O 0.25 130
超临界CO2 2 4 016 5.0 24.00 130
H2O 0.25 130

Fig.2

Initial configurations for free energy calculations. (a)One dye molecule in solvent; (b) Two dye molecules in solvent"

Tab.2

Simulation settings for analysis of weak interactions"

体系 溶剂 盒子边长/nm 压力/MPa 温度/℃
超临界CO2 3.5 24.00 130
H2O 3.5 0.25 130

Fig.3

Initial configuration for the analysis of weak interactions"

Tab.3

Free energies of C.I. Disperse Brown 19 in supercritical CO2 and water"

体系 溶剂 压力/
MPa
温度/
ΔGsol/
(kJ·mol-1)
ΔGbind/
(kJ·mol-1)
Ⅰ-1 超临界
CO2
24.00 130 -45.12±0.20 -9.76±0.42
Ⅰ-2 -47.43±0.17 -9.37±0.32
Ⅰ-3 -47.03±0.11 -9.13±1.57
Ⅱ-1 H2O 0.25 130 -55.99±0.54 -8.73±1.50
Ⅱ-2 -55.69±0.86 -8.80±1.57
Ⅱ-3 -55.77±0.78 -9.12±1.78

Fig.4

Analysis of weak interactions between C.I. Disperse Brown 19 and supercritical CO2 molecules (a) and water molecules (b) (isosurface of NCI=0.35)"

Fig.5

Stability of weak interactions between C.I. Disperse Brown 19 and supercritical CO2 molecules (a) and water molecules (b) (isosurface of NCI=0.35)"

Tab.4

Solubilities of different disperse dyes in supercritical CO2 and water"

溶剂 染料 压力/
MPa
温度/
溶解度/
(mol·mol-1)
参考
文献
超临界
CO2
分散橙30 12~24 60~120 1.2×10-8~
6.8×10-6
[6]
分散蓝79 12~24 60~120 0.7×10-8~
3.7×10-6
[6]
分散红167 12~24 60~120 0.9×10-8~
2.1×10-6
[6]
分散橙25 10~30 50~110 1.9×10-9~
1.7×10-5
[7]
分散蓝354 10~30 50~110 0.6×10-8~
4.4×10-5
[7]
分散红73 15~30 70~110 3.0×10-6~
3.0×10-5
[8]
分散黄119 15~30 80~120 1.6×10-8~
1.9×10-7
[9]
分散红343 15~30 80~120 3.8×10-9~
3.5×10-6
[9]
分散紫28 12~25 50~110 0.5×10-7~
5.2×10-6
[27]
分散红60 15~34 40~150 1.0×10-6~
3.9×10-5
[28]
分散橙3 0.1 60~90 2.2×10-7~
1.1×10-6
[29]
分散红19 0.1 60~90 2.1×10-7~
1.7×10-6
[29]
分散蓝14 0.1 60~90 1.4×10-7~
3.2×10-7
[29]
分散蓝26 0.1 60~90 2.4×10-8~
1.1×10-6
[29]
分散红11 0.1 60~90 4.4×10-7~
1.0×10-6
[29]
分散黄54 120 0.4×10-6 [10]
分散黄82 130 3.8×10-7 [10]
分散橙30 130 1.6×10-6 [10]
分散红82 130 3.9×10-6 [10]
分散黄114 130 0.8×10-6 [10]
[1] 侯爱芹, 戴瑾瑾. 分散染料在超临界CO2中上染涤纶的研究[J]. 纺织学报, 2004,25(5):17-19.
HOU Aiqin, DAI Jinjin. Study on dyeing properties of polyester with disperse dyes in supercritical carbon dioxide[J]. Journal of Textile Research, 2004,25(5):17-19
[2] 鲁雪燕. 新型环保三原色分散染料在超临界CO2中溶解度的测定与关联研究[D]. 杭州:浙江工业大学, 2009: 14-15.
LU Xueyan. Measurement and correlation of solubilities of the new environment-friendly trichromatic disperse dyes in supercritical carbon dioxide[D]. Hangzhou: Zhejiang University of Technology, 2009: 14-15.
[3] 郑金花. 分散红54在超临界CO2/共溶剂中溶解度的测定与关联[D]. 杭州:浙江工业大学, 2010: 10-12.
ZHENG Jinhua. Measurement correlation of solubilities of Disperse Red 54 in supercritical carbon dioxide with cosolvent[D]. Hangzhou: Zhejiang University of Technology, 2010: 10-12.
[4] 林春绵, 宋赛赛, 刘建峰. 分散染料在超临界CO2中的溶解性研究进展[J]. 印染, 2005(16):46-50.
LIN Chunmian, SONG Saisai, LIU Jianfeng. Progress in solubility of disperse dyes in supercritical carbon dioxide[J]. China Dyeing & Finishing, 2005(16):46-50.
[5] 余志成, 林鹤鸣. 分散蓝79在超临界CO2中的溶解特性及染色行为[J]. 纺织学报, 2006,27(6):51-54.
YU Zhicheng, LIN Heming. Solubility and dyeing performance of Disperse Blue 79 in supercritical carbon dioxide[J]. Journal of Textile Research, 2006,27(6):51-54.
[6] KONG X, HUANG T, CUI H, et al. Multicomponent system of trichromatic disperse dye solubility in supercritical carbon dioxide[J]. Journal of CO2 Utilization, 2019,33:1-11.
[7] SHINODA T, TAMURA K. Solubilities of CI Disperse Orange 25 and CI Disperse Blue 354 in supercritical carbon dioxide[J]. Journal of Chemical and Engineering Data, 2003,48(4):869-873.
[8] DONG P, XU M, LU X, et al. Measurement and correlation of solubilities of CI Disperse Red 73, CI Disperse Yellow 119 and their mixture in supercritical carbon dioxide[J]. Fluid Phase Equilibria, 2010,297(1):46-51.
[9] 宋赛赛. 分散染料在超临界CO2染色中的溶解性及分配性研究[D]. 杭州:浙江工业大学, 2006: 22-46.
SONG Saisai. Solubility and partition of disperse dyes in supercritical carbon dioxide dyeing[D]. Hangzhou: Zhejiang University of Technology, 2006: 22-46.
[10] FERUS-COMELO M. A new method to measure the solubility of disperse dyes in water at high tempera-ture[J]. Coloration Technology, 2015,131(4):269-271.
[11] DATYNER A. The solubilization of disperse dyes by dispersing agents at 127 ℃[J]. Journal of the Society of Dyers and Colourists, 1978,94(6):256-260.
doi: 10.1111/(ISSN)1478-4408b
[12] PRIKRYL J, RUZICKA J, BURGERT L. A new method of determining the solubility of disperse dyes[J]. Journal of the Society of Dyers and Colourists, 1979,95(10):349-351.
doi: 10.1111/(ISSN)1478-4408b
[13] 何玉宏. 高温分散剂的合成及其对分散染料的染色应用[D]. 上海:东华大学, 2018: 1-10.
HE Yuhong. Synthesis of high temperature dispersants and their application to dyes[D]. Shanghai: Donghua University, 2018: 1-10.
[14] CHAMI F, WILSON M R. Molecular order in a chromonic liquid crystal: a molecular simulation study of the anionic azo dye sunset yellow[J]. Journal of The American Chemical Society, 2010,132(22):7794-7802.
doi: 10.1021/ja102468g pmid: 20469909
[15] PETRENKO V E, ANTIPOVA M L, GURINA D L. Solvation of salicylic acid in pure, methanol-modified and water-modified supercritical carbon dioxide: molecular dynamics simulation[J]. The Journal of Supercritical Fluids, 2015,104:227-233.
doi: 10.1016/j.supflu.2015.06.016
[16] JORGENSEN W L, MAXWELL D S, TIRADO-RIVES J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of The American Chemical Society, 1996,118(45):11225-11236.
doi: 10.1021/ja9621760
[17] HARRIS J G, YUNG K H. Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model[J]. The Journal of Physical Chemistry C, 1995,99(31):12021-12024.
[18] WANG J, ZHONG H, FENG H, et al. Molecular dynamics simulation of diffusion coefficients and structural properties of some alkylbenzenes in supercritical carbon dioxide at infinite dilution[J]. Journal of Chemical Physics, 2014,140(10):104501.
[19] PIPOLO S, BENASSI E, BRANCOLINI G, et al. First-principle-based MD description of azobenzene molecular rods[J]. Theoretical Chemistry Accounts, 2012,131(10):1274.
doi: 10.1007/s00214-012-1274-z
[20] DODDA L S, VILSECK J Z, CUTRONA K J, et al. Evaluation of CM5 charges for nonaqueous condensed-phase modeling[J]. Journal of Chemical Theory and Computation, 2015,11(9):4273-4282.
doi: 10.1021/acs.jctc.5b00414 pmid: 26575922
[21] MOBLEY D L, CHODERA J D, DILL K A. On the use of orientational restraints and symmetry corrections in alchemical free energy calcula-tions[J]. The Journal of Chemical Physics, 2006,125(8):084902.
doi: 10.1063/1.2221683 pmid: 16965052
[22] POHORLLE A, JARZYNSKI C, CHIPOT C. Good practices in free-energy calculations[J]. The Journal of Physical Chemistry B, 2010,114(32):10235-10253.
doi: 10.1021/jp102971x pmid: 20701361
[23] BORESCH S, TETTINGER F, LEITGEB M, et al. Absolute binding free energies: a quantitative approach for their calculation[J]. The Journal of Physical Chemistry B, 2003,107(35):9535-9551.
doi: 10.1021/jp0217839
[24] KLIMOVICH P V, SHIRTS M R, MOBLEY D L. Guidelines for the analysis of free energy calcula-tions[J]. Journal of Computer-Aided Molecular Design, 2015,29(5):397-411.
doi: 10.1007/s10822-015-9840-9 pmid: 25808134
[25] JOHNSON E R, KEINAN S, MORI-SANCHEZ P, et al. Revealing noncovalent interactions[J]. Journal of The American Chemical Society, 2010,132(18):6498-506.
doi: 10.1021/ja100936w pmid: 20394428
[26] 胡金花, 闫俊, 李红, 等. 分散红11在超临界二氧化碳中的溶解度及其模型拟合[J]. 纺织学报, 2019,40(8):80-84.
HU Jinhua, YAN Jun, LI Hong, et al. Measurement and model fitting for solubility of Disperse Red 11 in supercritical CO2[J]. Journal of Textile Research, 2019,40(8):80-84.
[27] ALWI R S, TAMURA K. Measurement and correlation of derivatized anthraquinone solubility in supercritical carbon dioxide[J]. Journal of Chemical and Engineering Data, 2015,60(10):3046-3052.
doi: 10.1021/acs.jced.5b00480
[28] SUNG H D, SHIM J J. Solubility of C.I. Disperse Red 60 and C.I. Disperse Blue 60 in supercritical carbon dioxide[J]. Journal of Chemical and Engineering Data, 1999,44(5):985-989.
doi: 10.1021/je990018t
[29] PATTERSON D, SHELDON R P. The solubilities and heats of solution of disperse dyes in water[J]. Journal of the Society of Dyers and Colourists, 1960,76(3):178-181.
[1] WU Wei, CHEN Xiaowen, ZHONG Yi, XU Hong, MAO Zhiping. Role of sodium sulfate in low add-on pad-cure-steam reactive dyeing process [J]. Journal of Textile Research, 2020, 41(05): 85-93.
[2] HU Jinhua, YAN Jun, LI Hong, PENG Jianjun, ZHENG Laijiu, ZHENG Huanda, HE Tingting. Measurement and model fitting for solubility of Disperse Red 11 in supercritical CO2 [J]. Journal of Textile Research, 2019, 40(08): 80-84.
[3] SHEN Yanqin, YANG Shu, WU Hailiang, WANG Zhongliang. Research progress of medium and low temperature water-soluble textile starch size [J]. Journal of Textile Research, 2019, 40(06): 142-151.
[4] QIAN Lumin, ZHANG Bin. Preparation and characterization of soluble hemostatic medical cotton gauze [J]. Journal of Textile Research, 2019, 40(05): 102-106.
[5] . Synthesis and properties of water soluble quaternary ammonium cationic starch sizing materials [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 73-78.
[6] . Research progress on textile finishing with assistance of supercritical carbon dioxide [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 177-184.
[7] . Dissolution properties of hemp fiber in lithium chloride /N, N- Dimethylacetamide [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 92-97.
[8] . New automatic and continuous production process of disperse dyes [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 80-85.
[9] . Influence of graft modification on sizing properties of feather keratin [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 68-73.
[10] . Research on color difference between PLA and PET fibers dyed with disperse dyes [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 43-0.
[11] . Reduction clearing-free dyeing of polyester/cotton fabeics with disperse/reactive dyes [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(4): 70-74.
[12] . Solubilization effect of some surfactants on C.I. Reactive Blue 221 [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(11): 82-0.
[13] . Determination of five yellow disperse dyestuffs in ecological textile by ultra-fast liquid chromatography coupled with tandem mass spectrometry [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(11): 113-0.
[14] .  Application of solubility parameter theory on color change of coated polyester Fabrics caused by migration of disperse dyes [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(1): 72-78.
[15] YAN Jing-Xue, ZHANG Rui-Yun. Influence of activation methods on waste cotton-polyester fabric recycling [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(5): 50-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!