Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (08): 95-100.doi: 10.13475/j.fzxb.20191003306

• Apparel Engineering • Previous Articles     Next Articles

Garment ornamenting craft classification model for knowledge graph on clothing design

YANG Juan1,2, ZHANG Yuanpeng3,4()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226001, China
    3. Research Institute of Smart Information Technology, Nantong University, Nantong, Jiangsu 226001, China
    4. Departing of Computing, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • Received:2019-10-16 Revised:2020-04-27 Online:2020-08-15 Published:2020-08-21
  • Contact: ZHANG Yuanpeng E-mail:155297131@qq.com

Abstract:

In order to eliminate the negative influences caused by noisy views or weakly relevant views in the garment ornamenting craft classification tasks, an automatic view-reduction multi-view classification model was used to filter noisy views or weakly relevant views in this research. Based on the 1-order TSK fuzzy system, an error constraint item was introduced to be the objective function for collaborative learning. Then, a variant entropy item was designed to learn the weight of each view, and a reduction principle was designed to filter noisy views or weakly relevant views during collaborative learning. The proposed model was tested as the final step on the clothing ornamenting craft classification tasks. Experimental results demonstrate that the proposed classification model can reduce noisy views or weakly relevant views effectively such that the negative influences generated by them can be avoided. Compared with the model without view-reduction, the proposed classification model achieves a 2.68% improvement in terms of data accuracy.

Key words: garment ornamenting craft, fuzzy system, multi-view data, view-reduction, collaborative learning, clothing design resource, knowledge graph

CLC Number: 

  • TP311.11

Tab.1

Some of web sites for text recourses describing garment ornamenting craft"

站名 站点网址
WGSN https://www.wgsnchina.cn/cs/
POP服装趋势 https://www.pop-fashion.com
WOW TREND http://www.wow-trend.com/
穿针引线 http://www.eeff.net/
CFW服装设计 https://art.cfw.cn/
YOKA时尚网 http://www.yoka.com/dna/
vogue http://www.vogue.com.cn/
女装品牌网 http://lady.ef43.com.cn/
中国童装品牌网 http://www.61kids.com.cn/
肉丁网 https://www.rouding.com
华衣网 http://www.ef360.com/
编织人生 http://www.bianzhirensheng.com/
T100趋势 http://n.t100.cn/Product/index.aspx
蝶讯网 http://www.diexun.com/
印染在线 http://yr.e-dyer.com/
布流行 http://www.8liuxing.com/xinshou/
中国刺绣网 http://www.rocky168.com/
中国服饰新闻网
倾城旗袍
http://www.cfw.com.cn/articlecat/id/79
https://www.hercity.com/
…… ……

Fig.1

Preprocessing of text recourses describing garment ornamenting craft"

Tab.2

Example of training texts"

类别 文本
刺绣 刺绣工艺从刺绣方式上,可以分为3类:手工刺绣、缝纫机绣和电子控制机绣。这3种方法中,由于手工刺绣针法灵活多变,装饰效果好,适宜在各类服饰及织物上绣制……
印染 在中原地区,印花技术的再度复兴是从缬开始的,缬有绞缬、葛缬和夹缬。绞缬、葛缬实际上就是一种仿染印花的织物……
编结 编结,就是用线、绳编织出各种花样的网袋或饰物,古代俗称“绛子”或“络子”。我国古代的竹、柳、草、棕、藤编艺术更是源远流长,品种多样……
手绘 中国上古时期已在车舆、衣冠上绘画,作为某种标识。后来借鉴刺绣衣裳的美化效果,将细致的绣花版样描画在服装上,或将名人画稿描摹在服装上,成为手绘装饰服装……
镶嵌 服装制作工艺中的“镶拼”,指将2块或2块以上的布片连缀成一片,主要是指不同颜色、质地或不同纹理的布片在衣身、衣缝沿边等处以块面状的形式拼接……

Tab.3

Training precison of comparison classification models"

对比分类
模型
视角约减前
训练精度
(平均值±标准差)
约减视
角数平
均值
视角约减后
训练精度
(平均值±标准差)
SVM 0.894 1±0.001 4 0.899 7±0.003 6
C4.5 0.863 4±0.009 8 0.874 5±0.007 4
1-TSK-FS 0.865 0±0.003 2 0.869 8±0.004 5
MV-TSK-FS 0.898 7±0.008 4 0.914 5±0.002 7
VR-MV-CM
(δm=0)
0.902 1±0.001 7 0.925 4±0.002 2
VR-MV-CM
(δm≠0)
0.945 3±0.002 0 12.1

Tab.4

Testing performance of comparison classification models"

对比分类
模型
视角约减前
测试精度
(平均值±标准差)
约减视
角数平
均值
视角约减后
测试精度
(平均值±标准差)
SVM 0.831 3±0.002 4 0.837 9±0.002 1
C4.5 0.809 7±0.010 5 0.811 1±0.009 8
1-TSK-FS 0.841 0±0.001 5 0.848 6±0.001 7
MV-TSK-FS 0.853 7±0.007 6 0.867 1±0.002 9
VR-MV-CM
(δm=0)
0.852 1±0.003 4 0.877 8±0.002 0
VR-MV-CM
(δm0)
0.878 9±0.001 6 11.4
[1] 我国古代印染工艺的发展史 [EB/OL]. (2011-03-31)[2011-03-31]. https://www.douban.com/group/topic/18723587/.
The development history of printing and dyeing technology in ancient China[EB/OL]. (2011-03-31)[2011-03-31]. https://www.douban.com/group/topic/18723587/.
[2] 周捷, 马秋瑞. 基于BP神经网络的运动文胸肩带属性与乳房振幅的函数关系[J]. 纺织学报, 2019,40(9):186-191.
ZHOU Jie, MA Qiurui. Prediction of relationship between shoulder strap attribute and breast amplitude of sports bra by BP neural network[J]. Journal of Textile Research, 2019,40(9):186-191.
[3] 王雯雯, 高畅, 刘基宏. 应用卷积神经网络的细纱断纱锭位识别[J]. 纺织学报, 2018,39(6):136-141.
WANG Wenwen, GAO Chang, LIU Jihong. Position recognition of spinning yarn breakage based on convolution neural network[J]. Journal of Textile Research, 2018,39(6):136-141.
[4] JIANG Yizhang, DENG Zhaohong, CHUNG Fulai, et al. Realizing two-view TSK fuzzy classification system by using collaborative learning[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017,47(1):145-160.
doi: 10.1109/TSMC.2016.2577558
[5] 张远鹏, 周洁, 邓赵红, 等. 代表点一致性约束的多视角模糊聚类算法[J]. 软件学报, 2019,30(2):282-301.
ZHANG Yuanpeng, ZHOU Jie, DENG Zhaohong, et al. Multi-view fuzzy clustering approach based on medoid invariant constraint[J]. Journal of Software, 2019,30(2):282-301.
[6] DENG Z H, JIANG Y Z, CHOI K, et al. Knowledge-leverage-based TSK fuzzy system modeling[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013,24(8):1200-1212.
doi: 10.1109/TNNLS.2013.2253617
[7] 杨娟, 吴志明, 张远鹏. 网络家用纺织品资源抽取方法[J]. 纺织学报, 2018,39(10):156-161.
YANG Juan, WU Zhiming, ZHANG Yuanpeng. Extracting method of household textile resources from Web[J]. Journal of Textile Research, 2018,39(10):156-161.
[8] 王健, 张俊妮. 统计模型在中文文本挖掘中的应用[J]. 数理统计与管理, 2017,36(4):609-619.
WANG Jian, ZHANG Junni. Applications of statistical models in Chinese text mining[J]. Journal of Applied Statistics and Management, 2017,36(4):609-619.
[9] YAHAV I, SHEHORY O, SCHWARTZ D. Comments mining with TF-IDF: the inherent bias and its removal[J]. IEEE Transactions on Knowledge and Data Engineering, 2019,31(3):437-450.
doi: 10.1109/TKDE.2018.2840127
[10] JI S, SATISH N, LI S, et al. Parallelizing word2vec in shared and distributed memory[J]. IEEE Transactions on Parallel and Distributed Systems, 2019,30(9):2090-2100.
doi: 10.1109/TPDS.71
[11] WU X, ZUO W, LIN L, et al. F-SVM: combination of feature transformation and SVM learning via convex relaxation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018,29(11):5185-5199.
doi: 10.1109/TNNLS.2018.2791507 pmid: 29994427
[12] 王文霞. 数据挖掘中改进的C4.5决策树分类算法[J]. 吉林大学学报(理学版), 2017,55(5):1274-1277.
WANG Wenxia. Improved C4.5 decision tree classification algorithm in data mining[J]. Journal of Jilin University (Science Edition), 2017,55(5):1274-1277.
[13] JIANG Yizhang, DENG Zhaohong, WU Dongrui, et al. Seizure classification from EEG signals using transfer learning, semi-supervised learning and tsk fuzzy system[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017,25(12):2270-2284.
doi: 10.1109/TNSRE.2017.2748388 pmid: 28880184
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!