Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (07): 122-128.doi: 10.13475/j.fzxb.20191003708

• Fiber Materials • Previous Articles     Next Articles

Self-cleaning properties of titanium dioxide modified polyester/cotton blend fabrics

CHEN Wendou1,2,3, ZHANG Hui1,2,3(), CHEN Tianyu1,2,3, WU Hailiang1,2,3   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Research Center for Functional Textile Materials, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    3. State Key Laboratory of Intelligent Textile Material and Products, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2019-10-17 Revised:2020-04-01 Online:2020-07-15 Published:2020-07-23
  • Contact: ZHANG Hui E-mail:hzhangw532@xpu.edu.cn

Abstract:

In order to endow polyester(PET)/cotton blend fabrics with photocatalytic self-cleaning properties, such fabrics were treated by using different nano TiO2 precursors like tetrabutyl titanate, titanium sulfate, and titanium oxysulfate based on the hydrothermal synthesis technique. The TiO2 modified PET/cotton fabrics were characterized by scanning electron microscope, X-ray diffractometer, Fourier transform infrared spectrometer, thermogravimetry analyzer and ultraviolet-vis diffuse reflection spectrometer. In addition, the self-cleaning abilities of such modified fabric samples were evaluated by the removals of organic stains on fabric surfaces. The experimental results confirm that in comparison with tetrabutyl titanate and titanium sulfate, titanium oxysulfate can be positively used as the TiO2 precursor to graft anatase-type TiO2 particles on the surface of PET/cotton fabric. The superior self-cleaning properties of the TiO2 modified PET/cotton fabric is due to the deposition of a large number of ultrafine TiO2 particles on the fabric surface, resulting in the enhanced light absorption ability and reduced band gap. The self-cleaning properties is kept well even after five times of washing.

Key words: polyester/cotton blend fabric, titanium dioxide, hydrothermal synthesis technique, functional textiles, self-cleaning property

CLC Number: 

  • TS151

Fig.1

SEM images of TiO2 modified PET/cotton blend fabrics. (a) 1#(×1 000); (b) 1#(cotton)(×3 000); (c) 1#(PET)(×3 000); (d) 2#(×1 000); (e) 2#(cotton)(×10 000); (f) 2#(PET)(×10 000);(g) 3#(×1 000); (h) 3#(cotton)(×10 000); (i) 3#(PET)(×10 000); (j) 4#(×1 000); (k) 4#(cotton) (×10 000); (l) 4#(PET)(×10 000)"

Tab.1

Results of chemical element content of PET/cotton blend fabrics"

织物
编号
元素质量百分比/% 元素原子百分比/%
C O Ti C O Ti
1# 56.47 43.53 63.34 36.66
2# 56.45 43.38 0.17 63.39 36.56 0.05
3# 41.51 49.94 8.55 51.16 46.20 2.64
4# 44.78 46.74 8.48 54.62 42.79 2.59

Fig.2

XRD patterns of PET/cotton blend fabrics"

Fig.3

FT-IR spectra of PET/cotton blend fabrics"

Fig.4

TG curves of PET/cotton blend fabrics"

Fig.5

Diffuse reflectance spectra(a) ande corresponding plots of (αhv)1/2 with hv (b) of PET/cotton fabrics"

Fig.6

Self-cleaning ability of PET/cotton blend fabrics stained by coffee"

Fig.7

Self-cleaning ability of PET/cotton blend fabrics stained by methylene blue solution"

Fig.8

Self-cleaning ability of PET/cotton blend fabrics stained by pitaya juice"

Fig.9

Effect of photocatalytic self-cleaning degradation of methylene blue dye on titanyl sulfate modified PET/cotton blend fabric under different washing times. (a) Washing once; (b) Washing twice; (c) Washing 3 times; (d) Washing 4 times; (e) Washing 5 times"

[1] SIVAKUMAR A, MURUGAN R, PERIYASAMY S. Evaluation of multifunctional properties of polyester/cotton blend treated with unmodified and modified nano-TiO2 particles[J]. Materials Technology, 2016,31(5):286-298.
[2] KHAN M Z, ASHRAF M, HUSSAIN T, et al. In situ deposition of TiO2 nanoparticles on polyester fabric and study of its functional properties[J]. Fibers and Polymers, 2015,16(5):1092-1097.
doi: 10.1007/s12221-015-1092-8
[3] HUMAYUN M, RAZIQ F, KHAN A, et al. Modification strategies of TiO2 for potential applications in photocatalysis: acritical review[J]. Green Chemistry Letters and Reviews, 2018,11(2):86-102.
doi: 10.1080/17518253.2018.1440324
[4] LEE K, YOON H, AHN C, et al. Strategies to improve the photocatalytic activity of TiO2: 3D nanostructuring and heterostructuring with graphitic carbon nanomaterials[J]. Nanoscale, 2019,11(15):7025-7040.
pmid: 30920558
[5] REDDY K R, HASSAN M, GOMES V G. Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis[J]. Applied Catalysis A:General, 2015,489:1-16.
[6] GORJANC M, SALA M. Durable antibacterial and UV protective properties of cellulose fabric functionalized with Ag/TiO2 nanocomposite during dyeing with reactive dyes[J]. International Journal of Nanomedicine, 2017,12:2593-2606.
pmid: 28408826
[7] ZHANG Weiwei, ZHANG Desuo, CHEN Yuyue, et al. Hyperbranched polymer functional TiO2 nanoparticles: synjournal and its application for the anti-UV finishing of silk fabric[J]. Fibers and Polymers, 2015,16(3):503-509.
doi: 10.1007/s12221-015-0503-1
[8] EL-NAGGER A A, ELSAYED S S, IBRAHIM S M. Effects of TiO2 on the hydrophilicity of cotton/polyester (50/50) blend fabric under UV irradiation[J]. Nanotechnology Business Journal, 2017,90(2):277-283.
[9] 解芳, 米丹. 纳米二氧化钛水溶胶对涤纶织物的抗静电整理[J]. 染整技术, 2008,30(10):14-15.
XIE Fang, MI Dan. Antistatic finishing of polyester fabric with nano titanium dioxide hydrosol[J]. Textile Dyeing and Finishing Journal, 2008,30(10):14-15.
[10] MONTAZER M, SEIFOLLAHZADEH S. Pretreatment of wool/polyester blended fabrics to enhance titanium dioxide nanoparticle adsorption and self-cleaning properties[J]. Coloration Technology, 2011,127(5):322-327.
doi: 10.1111/j.1478-4408.2011.00316.x
[11] LI Zhiqiang, DONG Yongchun, LI Bing, et al. Creation of self-cleaning polyester fabric with TiO2 nanoparticles via a simple exhaustion process: conditions optimization and stain decomposition pathway[J]. Materials & Design, 2018,140:366-375.
[12] 吕赛龙, 霍瑞亭, 贾国强. 光催化自清洁纺织品的制备及其性能[J]. 纺织学报, 2018,39(5):87-91.
LÜ Sailong, HUO Ruiting, JIA Guoqiang. Preparation and properties of photocatalytic self-cleaning textiles[J]. Journal of Textile Research, 2018,39(5):87-91.
[13] CAPUTO F, NICOLA M D E, SIENKIEWICZ A, et al. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis[J]. Nanoscale, 2015,7(38):15643-15656.
doi: 10.1039/c5nr03767k pmid: 26349675
[14] LIU Shi, ZHANG Qian, XU Zhangjie, et al. Surface modification of TiO2/SiO2 composite hydrosol stabilized with polycarboxylic acid on Kroy-process wool fabric[J]. Journal of Adhesion Science and Technology, 2017,31(11):1209-1218.
doi: 10.1080/01694243.2016.1249687
[15] YU Jian, PANG Zengyuan, ZHENG Chenghui, et al. Cotton fabric finished by PANI/TiO2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity[J]. Applied Surface Science, 2018,470:84-90.
doi: 10.1016/j.apsusc.2018.11.112
[16] KAPLAN R, ERJAVEC B, DRAZIC G, et al. Simple synjournal of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants[J]. Applied Catalysis B:Environmental, 2016,181:465-474.
doi: 10.1016/j.apcatb.2015.08.027
[17] ZIKRIYA M, NADAF Y F, BHARATHY P V, et al. Luminescent characterization of rare earth Dy~(3+) ion doped TiO2 prepared by simple chemical co-precipitation method[J]. Journal of Rare Earths, 2019,37(1):24-31.
doi: 10.1016/j.jre.2018.05.012
[18] MONTAZER M, SEIFOLLAHZADEH S. Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreat-ment[J]. Photochemistry and Photobiology, 2011,87(4):877-83.
doi: 10.1111/j.1751-1097.2011.00917.x
[19] XIAO Xingfang, LIU Xin, CHEN Fengxia, et al. Highly anti-UV properties of silk fiber with uniform and conformal nanoscale TiO2 coatings via atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2015,7(38):21326-21333.
doi: 10.1021/acsami.5b05868 pmid: 26389713
[20] IWASAKI M, MIYAMOTO Y, ITO S, et al. Fabrication of platy apatite nanocrystals loaded with TiO2 nanoparticles by two-step emulsion method and their photocatalytic activity[J]. Journal of Colloid and Interface Science, 2008,326(2):537-540.
doi: 10.1016/j.jcis.2008.07.041 pmid: 18703202
[21] GUPTA V K, FAKHRL A, AGARWAL S, et al. Preparation and characterization of TiO2 nanofibers by hydrothermal method for removal of Benzodiazepines (Diazepam) from liquids as catalytic ozonation and adsorption processes[J]. Journal of Molecular Liquids, 2018,249:1033-1038.
doi: 10.1016/j.molliq.2017.11.144
[22] ZHANG H, ZHANG X T. Modification and dyeing of silk fabric treated with tetrabutyl titanate by hydrothermal method[J]. Journal of Natural Fibers, 2014,11(1):25-38.
doi: 10.1080/15440478.2013.824852
[23] ZHANG Hui, ZHU Linlin, SUN Runjun. Structure and properties of cotton fibers modified with titanium sulfate and urea under hydrothermal conditions[J]. Journal of Engineered Fibres and Fabrics, 2014,9(1):67-75.
[24] BAVYKIN D V, DUBOVITSKAYA V P, VORONTSOV A V, et al. Effect of TiOSO4 hydrothermal hydrolysis conditions on TiO2 morphology and gasphase oxidative activity[J]. Research on Chemical Intermediates, 2007,33(3-5):449-464.
doi: 10.1163/156856707779238702
[25] XU Hao, LIU Shiqi, ZHOU Shan, et al. Morphology and photocatalytic performance of nano-sized TiO2 prepared by simple hydrothermal method with different pH values[J]. Rare Metals, 2018,37(9):750-758.
doi: 10.1007/s12598-017-0960-3
[26] RANA M, HAO B, MU L, et al. Development of multi-functional cotton fabrics with Ag/AgBreTiO2 nanocomposite coating[J]. Composites Science and Technology, 2016,122:104-112.
doi: 10.1016/j.compscitech.2015.11.016
[27] ZHOU Wenya, ZHANG Yangyang, SHI Yidong. In situ Loading TiO2 and its photocatalysis and UV resistance on cotton fabric[J]. Fibers and Polymers, 2017,18(6):1073-1078.
doi: 10.1007/s12221-017-1055-3
[28] ZHANG Hui, YANG Lu. Imbuing titanium dioxide into cotton fabric using tetrabutyl titanate by hydrothermal method[J]. Journal of The Textile Institute, 2012,103(8):885-892
doi: 10.1080/00405000.2011.621678
[29] BOZZI A, YURANOVA T, KIWI J. Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2005,172:27-34.
doi: 10.1016/j.jphotochem.2004.11.010
[30] BANERJEE S, DIONYSIOU D D, PILLAI S C. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis[J]. Applied Catalysis B-Environmental, 2015,176:396-428.
[31] ZHANG Xi, AI Zhihui, JIA Falong, et al. Generalized one-pot synjournal characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres[J]. Journal of Physical Chemistry C, 2008,112(3):747-753.
doi: 10.1021/jp077471t
[32] ZHANG Yeguang, ZHANG Shufen, WU Suli. Room-temperature fabrication of TiO2-PHEA nanocomposite coating with high transmittance and durable superhydrophilicity[J]. Chemical Engineering Journal, 2019,371:609-617.
[33] ZUNIC V, VUKOMANOVIC M, SKAPIN S D, et al. Photocatalytic properties of TiO2 and TiO2/Pt: a sol-precipitation, sonochemical and hydrothermal approach[J]. Ultrasonics Sonochemistry, 2014,21(1):367-375.
doi: 10.1016/j.ultsonch.2013.05.018 pmid: 23831420
[34] WU Deyong, LONG Mingce, ZHOU Jiangya, et al. Synjournal and characterization of self-cleaning cotton fabrics modified by TiO2 through a facile approach[J]. Surface & Coatings Technology, 2009,203(24):3728-3733.
[35] MILOSEVIC M, KRKOBABIC A, RADOICIC M, et al. Biodegradation of cotton and cotton/polyester with Ag/TiO2 nanoparticles in soil[J]. Carbohydrate Polymers, 2017,158:77-84.
doi: 10.1016/j.carbpol.2016.12.006 pmid: 28024545
[36] CHUNG C, LEE M, CHOE E K. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy[J]. Carbohydrate Polymers, 2004,58(4):417-420.
[37] UDDIN M J, CESANO F, SCARANO D, et al. Cotton textile fibres coated by Au/TiO2 films: synjournal, characterization and self cleaning properties[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008,199(1):64-72.
[38] MIHAILOVIC D, SAPONJICZ, MOLINAR, et al. Improved properties of oxygen and argon rf plasma-activated polyester fabrics loaded with TO2 nanopar-ticles[J]. ACS Applied Materials & Interfaces, 2016,2(6):1700-1706.
doi: 10.1021/am100209n pmid: 20524631
[1] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[2] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
[3] CHANG Shuo, SHEN Jiajia. Research progress of graphene durable finishing of textiles [J]. Journal of Textile Research, 2020, 41(02): 179-186.
[4] LUO Jiani, LI Lijun, ZHANG Xiaosi, ZOU Hantao, LIU Xueting. Modification of activated carbon fiber using graphene oxide doped titanium dioxide [J]. Journal of Textile Research, 2020, 41(01): 8-14.
[5] XU Lin, REN Yu, ZHANG Hongyang, WU Shuangquan, LI Ya, DING Zhirong, JIANG Wenwen, XU Sijun, ZANG Chuanfeng. Construction and properties of superhydrophobic layer of titania/fluorosilane on polyester fabric surface [J]. Journal of Textile Research, 2019, 40(12): 86-92.
[6] ZHANG Mengyuan, HUANG Qinglin, HUANG Yan, XIAO Changfa. Electrospun poly(tetrafluoroethylene)/TiO2 photocatalytic nanofiber membrane and its application [J]. Journal of Textile Research, 2019, 40(09): 1-7.
[7] . Preparation and performance of self-cleaning fabrics based on Ag/TiO2 photocatalysis [J]. Journal of Textile Research, 2018, 39(12): 89-94.
[8] . Preparation and photocatalytic properties of  polyester fabric loaded with titanium dioxide [J]. Journal of Textile Research, 2018, 39(11): 91-95.
[9] . Photocatalytic degradetion kinetics optimization of acid red 37 by response surface method and transformation mechanism thereof [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 81-88.
[10] . Preparation and characterization of super hydrophobic aerogel coated ultra-high molecular weight polyethylene fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 93-99.
[11] . Preparation and visible light photocatalytic property of visible light-induced polyacrylonitrile nanofibers mat [J]. Journal of Textile Research, 2015, 36(02): 13-18.
[12] . Thermal insulation properties of agricultural covering nonwovens [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(5): 67-0.
[13] . Security of nano-functional textiles during application [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(8): 98-101.
[14] Yan Wang;FU Ya-Qin. Preparation of TiO2 porous film supported on carbon fiber and its photocatalytic performances [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(4): 23-28.
[15] Yaofeng Zhu;Yanjie Ding;FU Ya-Qin. Preparation and performances of photocatalysed titanium dioxide thin film deposited on polyacrylonitile based carbon fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(4): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!