Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (12): 166-173.doi: 10.13475/j.fzxb.20191004608

• Comprehensive Review • Previous Articles     Next Articles

Research progress of stitched composites and their marine applications

LIN Chen1,2, CHENG Ling2,3()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, Tianjin 300387, China
    3. School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
  • Received:2019-10-22 Revised:2020-08-28 Online:2020-12-15 Published:2020-12-23
  • Contact: CHENG Ling E-mail:chengling@tiangong.edu.cn

Abstract:

Along with the vigorous development of marine resources, the application of composites in the marine field has been progressed rapidly. The interlaminar properties of traditional laminate composites are weak, and the stitching process could effectively improve its interlaminar properties. In view of the characteristics of the marine environment, the current research status of stitched composites under the marine environment was reviewed. The influence of the marine environment and stitching process on the interlaminar properties, impact damage resistance and in-plane properties of the stitched composites and their corresponding mechanisms were discussed and analyzed in this paper. The potential applications of stitched composites in ships, ship accessories, turbine blade and submarine gasoline fields were summarized. Problems to be solved for marine applications of stitched composites in the marine environment were summarized, and the development trend and application prospect of stitched composites in the marine environment in the future were proposed.

Key words: laminate composite, stitched composite, stitching process, marine environment, interlaminar property

CLC Number: 

  • TB332

Fig.1

Schematic diagram of fiber bridging at different hygrothermal ageing times"

Fig.2

Schematic diagram of Mode I interlayer enhancement effect of stitched composites. (a) Crack tip; (b)Fiber bridging"

Fig.3

SEM images of Mode I fracture surfaces for stitched composites in wet environment. (a) Moisture induced cavity; (b) Surface degradation; (c) Matrix deformation; (d) Fractured fiber and matrix; (e) Voids and fractured stitch; (f) Fiber bridging"

Fig.4

SEM images of Mode II fracture surfaces for stitched composites in wet environment. (a) Cavity and shear fractured fibers; (b) Matrix degradation; (c) Fractured stitch fibers; (d) Fiber breakage and bridging"

Fig.5

Photomicrograph of specimen after tensile testing in hygrothermal environment. (a) Sectional view; (b) In-plane view"

Fig.6

Schematic diagram of blade local stitched reinforcement"

[1] FRANCESONI L, AYMERICH F. Effect of stitching on the flexure after impact behavior of thin laminated composites[J]. Proceedings of the Institution of Mechanical Engineers Part C:Journal of Mechanical Engineering Science, 2018,232(8):1374-1388.
[2] CHOI S, DOUGLAS E P. Complex hygrothermal effects on the glass transition of an epoxy-amine thermoset[J]. ACS Applied Materials & Interfaces, 2010,2(3):934-941.
doi: 10.1021/am9009346 pmid: 20356301
[3] TOSCANO A, PITARRESI G, SCAFIDI M. Water diffusion and swelling stresses in highly crosslinked epoxy matrices[J]. Polymer Degradation and Stability, 2016,133:255-263.
[4] SETHI S, RAY B C. Environmental effects on fibre reinforced polymeric composites: evolving reasons and remarks on interfacial strength and stability[J]. Advances in Colloid & Interface Science, 2015,217:43-67.
doi: 10.1016/j.cis.2014.12.005 pmid: 25578406
[5] SURATHI P, KARBHARI V M. Hygrothermal effects on durability and moisture kinetics of fiber-reinforced polymer composites[D]. San Diego:University of California, 2006: 8-35.
[6] MOURTIZAS A P, LEONGB K H, HERSZBERGC I. A review of the effect of stitching on the in-plane mechanical properties of fibre-reinforced polymer composites[J]. Composites Part A: Applied Science & Manufacturing, 1997,28:979-991.
[7] BOISSEAU A, PEYRAL C. Long term durability of composites in marine environment: comparative study of fatigue behavior[J]. Procedia Engineering, 2015,133:535-544.
[8] DAVIDSON B D, KUMAR M, SOFFA M A. Influence of mode ratio and hygrothermal condition on the delamination toughness of a thermoplastic particulate interlayered carbon/epoxy composite[J]. Composites Part A:Applied Science & Manufacturing, 2009,40(1):67-79.
[9] ZENASNI R, BACHIR A S, ARGUELLES A, et al. Effect of hygrothermomechanical aging on the interlaminar fracture behavior of woven fabric fiber/PEI composite materials[J]. Journal of Thermoplastic Composite Materials, 2016,19:385-398.
[10] 双超. 湿热老化对碳纤维复合材料界面及抗冲击性能影响研究[D]. 南京:南京航空航天大学, 2018: 22-42.
SHUANG Chao. Effect of hygrothermal aging on interface properties and impact resistance of carbon fiber composite material[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018: 22-42.
[11] SHIINO M Y, MONTORO S R, DONADAN M V, et al. Hygrothermal effect on composites under in-plane fatigue at stress ratios of r=-1 and r=0.1:an analysis of quasi-isotropic stitched carbon fibers[J]. Journal of Materials Engineering and Performance, 2018,27(11):5964-5972.
doi: 10.1007/s11665-018-3584-3
[12] LIU H, LI M, LU Z Y, et al. Multiscale simulation study on the curing reaction and the network structure in a typical epoxy system[J]. Macromolecules, 2011,44:8650-8660.
doi: 10.1021/ma201390k
[13] SELZER R, FRIEDRICH K. Influence of water up-take on interlaminar fracture properties of carbon fibre-reinforced polymer composites[J]. Journal of Materials Science, 1995,30(2):334-338.
doi: 10.1007/BF00354392
[14] SELZER R, FRIEDRICH K. Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture[J]. Composites Part A:Applied Science and Manufacturing, 1997,28:595-604.
doi: 10.1016/S1359-835X(96)00154-6
[15] 程小全, 郦正能, 赵龙. 缝合复合材料的应用与力学性能[J]. 高分子材料科学与工程, 2009,25(3):145-149.
CHENG Xiaoquan, LI Zhengneng, ZHAO Long. Application and mechanical properties of stitched composite structures[J]. Polymer Materials Science & Engineering, 2009,25(3):145-149.
[16] WOOD M D K, SUN X, TONG L, et al. The effect of stitch distribution on Mode I delamination toughness of stitched laminated composites-experimental results and FEA simulation[J]. Composites Science and Technology, 2007,67(6):1058-1072.
doi: 10.1016/j.compscitech.2006.06.002
[17] ALMANSOUR F A, DHAKAL H N, ZHANG Z Y. Effect of water absorption on Mode I interlaminar fracture toughness of flax/basalt reinforced vinyl ester hybrid composites[J]. Composite Structures, 2017,168:813-825.
doi: 10.1016/j.compstruct.2017.02.081
[18] HAN W, ZHANG H P, XU X, et al. Hybrid enhancements by polydopamine and nanosilica on carbon fibre reinforced polymer laminates under marine environment[J]. Composites Part A:Applied Science and Manufacturing, 2018,112:283-289.
[19] TAO A, WANG R, WANG Z, et al. The influence of surface treatment of stitch threads and stitching on interlaminar properties of unidirectional laminates[J]. Composite Interfaces, 2016,23(4):373-382.
[20] GREENHALGHE S, SINGH S. The effect of moisture, matrix, and ply orientation on delamination resistance, failure criteria and fracture morphology in CFRP[M]// ZUREICK A H M,NETTLES A T. Composite Materials: Testing, Design, and Acceptance Criteria. West Conshohocken:ASTM International, 2002: 101-221.
[21] TODO M, NAKAMURA T, TAKAHASHI K. Effects of moisture absorption on the dynamic interlaminar fracture toughness of carbon/epoxy composites[J]. Journal of Composite Materials, 2000,34(8):630-648.
[22] KIM H S, WANG W X, TAKAO Y, et al. Effects of temperature on Mode II fracture toughness of multidirectional CFRP laminates[J]. International Journal of Modern Physics B, 2003,17(8/9):1717-1723.
[23] LADANI R B, NGUYEN A T, WANG C H, et al. Mode II interlaminar delamination resistance and healing performance of 3D composites with hybrid z-fibre reinforcement[J]. Composites Part A: Applied Science and Manufacturing, 2019,120:21-32.
[24] JAIN L K, DRANSFIELDB K A, MA Y. On the effects of stitching in CFRPs: II: Mode II delamination toughness[J]. Composites Science and Technology, 1998,58:829-837.
doi: 10.1016/S0266-3538(97)00186-3
[25] ALMANSOUR F A, DHAKAL H N, ZHANG Z Y. Investigation into Mode II interlaminar fracture toughness characteristics of flax/basalt reinforced vinyl ester hybrid composites[J]. Composites Science and Technology, 2018,154:117-127.
[26] BHUDOLIA S K, KAM K C K, PERROTEY P, et al. Effect of fixation stitches on out-of-plane response of textile non-crimp fabric composites[J]. Journal of Industrial Textiles, 2019,48(7):1151-1166.
[27] MOKHTAR H, SICOT O, ROUSSEANU L, et al. The Influence of ageing on the impact damage of carbon epoxy composites[J]. Procedia Engineering, 2011,10(7):2615-2620.
[28] QI B. The residual compression strength of stitched and unstitched plain-weave carbon/epoxy laminates after impact and hygrothermal cycling[C]// HERSZBERG I, BANNISTER M K. Proceedings of the 11th International Conference on Composite Materials. Queensland:Gold Coast, 1997: 149-159.
[29] FRANCESCONI L, AYMERICH F. Effect of stitching on the flexure after impact behavior of thin laminated composites[J]. Journal of Mechanical Engineering Science, 2018,232(8):1374-1388.
[30] BYUN J H. Impact properties of laminated composites with stitching fibers[C]// SONG S W,LEE C H.15th International Conference on Composite Mate-rials (ICCM-15). Durban:Composite Structures Ltd, 200:6.
[31] CHEN G, CHENG X, LI Z, et al. Hygrothermal properties of stitched and unstitched uniweave T300/QY9512 laminates (with a hole)[J]. Journal of Reinforced Plastics and Composites, 2004,23(15):1663-1671.
[32] LIU D. Delamination resistance in stitched and unstitched composite plates subjected to impact loading[J]. Journal of Reinforced Plastics and Composites, 1990,9(1):59-69.
doi: 10.1177/073168449000900104
[33] AYMERICH F, PANI C, PRIOL O. Effect of stitching on the low-velocity impact response of [03/903]s graphite/epoxy laminates[J]. Composites Part A:Applied Science and Manufacturing, 2007,38(4):1174-1182.
[34] BORTLUZZI D B, GOMES F G, HIRAYAMA D, et al. Development of a 3D reinforcement by tufting in carbon fiber/epoxy composites[J]. International Journal of Advanced Manufacturing Technology, 2019,100(5-8):1593-1605.
[35] AN W J, KIM C H, CHOI J H, et al. Static strength of RTM composite joint with I-fiber stitching process[J]. Composite Structures, 2019,210:348-353.
doi: 10.1016/j.compstruct.2018.11.072
[36] KANG T J, LEE S H. Effect of stitching on the mechanical and impact properties of woven laminate composite[J]. Journal of Composite Materials, 1994,28:1574-1587.
[37] DICJINSIN L C, FARLEY G L, HINDERS M K. Prediction of effective three-dimensional elastic constants of translaminar reinforced composites[J]. Journal of Composite Materials 1999,33:1002-1029.
[38] CHENG X Q, BAI G Y, LI Z N. Effects of stitching parameters on tensile strength of FRPs under hygrothermal conditions[J]. Advanced Materials Research, 2012,570:63-77.
[39] 程小全, 郦正能, 寇长河. 缝合复合材料可用性:一般层合板的基本性能[J]. 复合材料学报, 2004(4):71-76.
CHENG Xiaoquan, LI Zhengneng, KOU Changhe. Properties of stitched composite laminates: the principal properties of general laminates[J]. Acta Materiae Compositae Sinica, 2004(4):71-76.
[40] HUANG Tao, JIAO Guiqiong, XU Tingting. Tensile and shear properties of stitched laminates in hygrothermal environment[J]. Key Engineering Materials, 2006, 326-328:1753-1756.
doi: 10.4028/www.scientific.net/KEM.326-328
[41] 黄涛, 矫桂琼. 湿热环境下缝合层压板的拉伸和剪切性能[J]. 强度与环境, 2006,33(2):45-49.
HUANG Tao, JIAO Guiqiong. Tension and shear properties of stitched laminates in hydrothermal environment[J]. Structure & Environment Engineering, 2006,33(2):45-49.
[42] ZHENG Y, CHENG X, YASIR B. Effect of stitching on plain and open-hole strength of CFRP laminates[J]. Chinese Journal of Aeronautics, 2012,25(3):473-484.
doi: 10.1016/S1000-9361(11)60411-1
[43] BILLISIK K, ERDOGAN G, SAPANCI E, et al. In-plane response of para-aramid/phenolic nanostitched and nanoprepreg 3D composites under tensile loading[J]. Polymer Composites, 2019,40(4):1275-1286.
[44] BILLISIK K, KARADUMAN S N, SAPANCIL E, et al. Flexural characterization of 3D prepreg/stitched carbon/epoxy/multiwalled carbon nanotube preforms and composites[J]. Journal of Composite Materials, 2019,53(5):563-577.
[45] 程小全, 郦正能, 赵龙. 缝合复合材料制备工艺和力学性能研究[J]. 力学进展, 2009,39(1):89-102.
CHENG Xiaoquan, LI Zhengneng, ZHAO Long. Study on preparation process and mechanical properties of stitched composites[J]. Advances in Mechanics, 2009,39(1):89-102.
[46] WALKER J, ROUMDY L, GOERING J. Effects of thermal and moisture cycling on the internal structure of stitched RTM laminates[C]// ROUNDY J. Third NASA Advanced Composites Technology Conference. Long Beach:Douglas Aircraft Co Inc, 1993: 415-432.
[47] FURROW K W, LOOS A C, CANO R J. Environmental effects on stitched RTM textile composites[J]. Journal of Reinforced Plactics and Composites, 1996,15(4):378-419.
[48] NESER G. Polymer based composites in marine use: history and future trends[J]. Procedia Engineering, 2017,194:19-24.
[49] 施军, 黄卓. 复合材料在海洋船舶中的应用[J]. 玻璃钢/复合材料, 2012(S1):269-273.
SHI Jun, HUANG Zhuo. Application of composite material in the marine structures[J]. Fiber Reinforced Plastics/Composites, 2012(S1):269-273.
[50] NISRIN A. Electromagnetic interference shielding of stitched carbon fiber composites[J]. Journal of Industrial Textiles, 2020,49(6):773-790.
[51] ABDELA N R, DONALDSON S. Interlaminar fracture toughness and electromagnetic interference shielding of hybrid-stitched carbon fiber composites[J]. Journal of Reinforced Plastics and Composites, 2018,37(18):1131-1141.
[52] KUMAR S A, UDDIN N M, RAHMAN M, et al. Introducing graphene thin films into carbon fiber composite structures for lightning strike protection[J]. Polymer Composites, 2019,40:517-525.
[53] 彭海俊, 秦志文, 王继辉, 等. 胶接面纤维铺层角度对复合材料胶接应力和强度影响分析[J]. 玻璃钢/复合材料, 2017(4):29-34.
PENG Haijun, QIN Zhiwen, WANG Jihui, et al. Analysis of interface ply angle effects on stress distribution and failure force of composite joint[J]. Fiber Reinforced Plastics/Composites, 2017(4):29-34.
[54] RAMAN V, DRISSI H M, GUILLAUMAY L, et al. Numerical simulation analysis as a tool to identify areas of weakness in a turbine wind-blade and solutions for their reinforcement[J]. Composites Part B: Engineering, 2016,103:23-39.
doi: 10.1016/j.compositesb.2016.07.018
[55] DAVIES P. Environmental degradation of composites for marine structures: new materials and new applica-tions[J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 2016,374(2071):20150272.
[56] 于礼玮, 曹维宇. 碳纤维复合材料在海洋中的应用[J]. 化工新型材料, 2016,44(8):4-5.
YU Liwei, CAO Weiyu. Application of carbon fiber composite in marine area[J]. New Chemical Materials, 2016,44(8):4-5.
[57] SUN X S, CHEN Y, TAN V B C, et al. Homogenization and stress analysis of multilayered composite offshore production risers[J]. Journal of Applied Mechanics, 2014,81(3):1-11.
[58] 孙微, 贺福. 碳纤维复合材料在海底油田领域中的应用[J]. 高科技纤维与应用, 2009,34(2):35-37.
SUN Wei, HE Fu. The application of carbon fiber composite materials in subsea oil field[J]. Hi-Tech Fiber & Application, 2009,34(2):35-37.
[1] ZHANG Guo-li;LI Jia-lu;LI Xue-ming. T型壁板RFI缝合复合材料的屈曲性能 [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(3): 67-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!