Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (09): 174-182.doi: 10.13475/j.fzxb.20191104309

• Column: Biomedical Textile Materials and It′s Products • Previous Articles     Next Articles

Preparation and cytotoxicity analysis of flexible metal electrodes for medical dressings

HAN Jiarui, HUANG Zhenzhen, WANG Jiajun, YIN Hao, GAO Jing(), LAO Jihong, WANG Lu   

  1. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2019-11-20 Revised:2020-05-06 Online:2020-09-15 Published:2020-09-25
  • Contact: GAO Jing E-mail:gao2001jing@dhu.edu.cn

Abstract:

In order to study the feasibility and safety of the preparation of flexible metal electrodes for medical dressings, a flexible micro-current biomedical dressing was prepared, taking a polyester nonwoven fabric as the base fabric, by the screen printing technique, where zinc was used for the negative electrode and silver the positive. The effects of dispersant type, dispersant content and binder content on the electrical properties of the metal electrodes were discussed, and the possible cytotoxicity problems caused by the metal electrodes were studied. The results show that the screen printing technique made the silver and zinc micro-nano particles adhere to the fabric surface uniformly. 1% carboxy methyl cellulose sodium(CMC) and 0.5% Tween-80 are found to be the optimal condition for good dispersion of the zinc and silver particles. Waterborne acrylic emulsion with mass fraction of 5% and 15% enabled zinc and silver metal electrodes to have excellent electrical properties respectively. The metal electrodes show good cytocompatibility with 0.5%-1.0% metal content, which is suitable for biomedical dressings to provide exogenous micro-current for the wound.

Key words: medical dressings, flexible metal electrode, cytotoxicity, bioelectric dressings

CLC Number: 

  • TS111.8

Tab.1

Printing ink ratio of zinc electrode"

锌电极编号 质量/g
Zn AAE SA CMC分散液
A 3.0 0.5 0.2 6.3
B 3.0 1.0 0.2 5.8
C 3.0 1.5 0.2 5.3
D 3.0 2.0 0.2 4.8
E 0.0 0.5 0.2 9.3

Tab.2

Printing ink ratio of silver electrode"

银电极编号 质量/g
银粉 AAE SA Tween-80分散液
A 3.0 0.5 0.2 6.3
B 3.0 1.0 0.2 5.8
C 3.0 1.5 0.2 5.3
D 3.0 2.0 0.2 4.8

Tab.3

Printing ink ratio of zinc and silver flexible electrode pairs"

基布编号 电极 质量/g
AAE 金属 SA 分散液
锌电极 5.00 0.50 2.00 92.50
银电极 15.00 0.50 2.00 82.50
锌电极 5.00 0.75 2.00 92.25
银电极 15.00 0.75 2.00 82.25
锌电极 5.00 1.00 2.00 92.00
银电极 15.00 1.00 2.00 82.00
锌电极 5.00 3.00 2.00 90.00
银电极 15.00 3.00 2.00 80.00
锌电极 5.00 5.00 2.00 88.00
银电极 15.00 5.00 2.00 78.00

Tab.4

Dispersion viscosity of different dispersants"

分散剂名称 黏度/(mPa·s)
Tween-80 118.00±5.60
PEG 100.00±2.80
CMC 8 045.44±10.76

Tab.5

Dispersion viscosity of different mass fractions of CMC"

CMC质量分数/% 黏度/(mPa·s)
0.5 2 704.00±27.80
1.0 8 045.44±10.76
1.5 18 215.56±222.13
2.0 40 826.67±473.41

Fig.1

Settling height of zinc powder in different dispersant systems"

Tab.6

Relative liquid level height of zinc dispersion systems under different mass fractions of CMC at 0 h"

CMC质量分数/% 相对液面高度/cm
0.5 2.67
1.0 2.63
1.5 2.60
2.0 2.52

Fig.2

Settlement height of zinc dispersion systems under different concentrations of CMC"

Fig.3

Absorbance of nano-silver dispersions with different dispersants"

Fig.4

SEM images of different zinc electrodes and based fabric (×3 000). (a) Zinc electrodes A; (b) Zinc electrodes B;(c) Zinc electrodes C; (d) Zinc electrodes D;(e)Based fabric"

Fig.5

XRD image of different zinc electrodes, zinc powder and polyester non-woven"

Fig.6

EDS image of different zinc electrode. (a) Zinc electrodes A; (b) Zinc electrodes B;(c) Zinc electrodes C;(d) Zinc electrodes D"

Fig.7

Voltages of different zinc electrodes"

Fig.8

SEM images of different silver electrodes and based fabric(×3 000). (a) Silver electrodes A'; (b) Silverelectrodes B'; (c) Silver electrodes C'; (d) Silver electrodes D'; (e)Based fabric"

Fig.9

XRD image of different silver electrodes, silver powder and polyester non-woven"

Fig.10

EDS image of different silver electrode. (a) Silver electrodes A'; (b) Silver electrodes B';(c) Silver electrodes C'; (d) Silver electrodes D'"

Fig.11

Voltages of silver electrodes with different mass fractions of AAE"

Fig.12

Apparent morphology of striped Ag/Zn electrode pairs"

Tab.7

Proliferation rate of cells in based fabric Ⅲ"

样品种类 细胞增殖率/%
条纹状基布Ⅲ 81.06±2.37
阴性对照 100.00±0.00
阳性对照 22.45±1.54

Fig.13

Proliferation rate of multiple dilution cells in based fabric"

[1] NUCCITELLI R. Endogenous ionic currents and dc electric-fields in multicellular animal-tissues[J]. Bioelectromagnetics, 1992(Suppl 1):147-157.
[2] KIM H, PARK S, HOUSLER G, et al. An overview of the efficacy of a next generation electroceutical wound care device[J]. Mil Med, 2016,181(5):184-190.
doi: 10.7205/MILMED-D-15-00157
[3] MCCALL K A, HUANG C C, FIERKE C A. Function and mechanism of zinc metalloenzymes[J]. Journal of Nutrition, 2000,130(5):1437-1446.
[4] BANERJEE J, DAS GHATAK P, ROY S, et al. Improvement of human keratinocyte migration by a redox active bioelectric dressing[J]. PLoS One, 2014,9(3):14.
[5] KIM H, MAKIN I, SKIBA J, et al. Antibacterial efficacy testing of a bioelectric wound dressing against clinical wound pathogens[J]. The Open Microbiology Journal, 2014,8:15-21.
pmid: 24627730
[6] BANERJEE J, DAS GHATAK P, ROY S, et al. Silver-zinc redox-coupled electroceutical wound dressing disrupts bacterial biofilm[J]. PLoS One, 2015,10(3):15.
[7] 吴倩倩, 李珂, 杨立双, 等. 载药聚偏氟乙烯伤口敷料的制备及其性能[J]. 纺织学报, 2020,41(1):26-31.
WU Qianqian, LI Ke, YANG Lishuang, et al. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings[J]. Journal of Textile Research, 2020,41(1):26-31.
[8] 方明锋, 王青宁, 杨明俊, 等. 纳米银在水相中的分散及其抑菌性能[J]. 稀有金属材料与工程, 2010,39(8):1492-1495.
FANG Mingfeng, WANG Qingning, YANG Mingjun, et al. Dispersion of nano-silver in aqueous media and its antibacterial properties[J]. Rare Metal Materials and Engineering, 2010,39(8):1492-1495.
[9] 张琦. 锌—空气电池纳米复合电极的制备及性能研究[D]. 太原:太原理工大学, 2015:16-17.
ZHANG Qi. Study on the preparation and properties of nano-composite electrode for zinc-air battery[D]. Taiyuan: Taiyuan University of Technology, 2015:16-17.
[10] KIM H, PARK S, HOUSLER G, et al. An overview of the efficacy of a next generation electroceutical wound care device[J]. Military Medicine, 2016,181(5):184-190.
doi: 10.7205/MILMED-D-15-00157
[11] 朱华杨. 石墨烯/纳米银导电油墨的制备及其导电性能研究[D]. 西安:西安理工大学, 2018:24-25.
ZHU Huayang. Preparation of graphene/nano Ag conductive ink and research its conductivity[D]. Xi'an: Xi'an University of Technology, 2018:24-25.
[12] 程祥. 含银敷料表征和银的释放及纳米银毒理学研究[D]. 成都:西南交通大学, 2015:37-38.
CHENG Xiang. Study on the characterization and release of silver-contained wound dressing and the toxicology of silvernanoparticles[D]. Chengdu: Southwest Jiaotong University, 2015:37-38.
[1] XU Shuiling. Study on antibacterial properties and cytotoxicity of seacell [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(01): 13-17.
[2] QIAN Cheng. Production and application of chitosan fiber medical dressings [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(11): 100-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!