Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (09): 21-26.doi: 10.13475/j.fzxb.20191104506

• Fiber Materials • Previous Articles     Next Articles

Study on liquid absorption performance of water absorbing resin

WANG Fenglong, WANG Jianming(), ZHOU Yitian, ZHAO Minghui   

  1. School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2019-11-20 Revised:2020-06-06 Online:2020-09-15 Published:2020-09-25
  • Contact: WANG Jianming E-mail:wangjm1502@163.com

Abstract:

In order to investigate the factors that affect the liquid absorption performance of water-absorbent resins, the structure of water absorbent resin was analyzed by means of scanning electron microscope and infrared spectrometer firstly. The time and temperature effects on the absorbency and water retention of water absorbent resin in water, simulated acid and alkali sweat were also explored. Analysis and discussions were carried out on the repeated absorbency of water absorbent resin. The results show that the surface of the absorbent resin has a large number of convex structures leading to a large specific surface area, increasing the liquid-absorption rate of the water-absorbent resin. The water-absorbent resin contains amide groups, and when submerged in deionized water and simulated sweat the maximum liquid absorption rates reach about 265, 50 and 50 g/g, respectively. The liquid absorption is influenced by the concentration of sodium ions in sweat, and the larger the concentration the worse the liquid absorption capacity. The acidity, alkalinity and temperature have little effect on the maximum absorption rate, but the temperature affects the water absorption rate in that the higher the temperature, the higher the liquid absorption rate, and the smaller the maximum liquid absorption rate. After 10 cycles of absorption loading, the liquid absorption rate of water-absorbent resin in the simulated sweat still reaches 87%.

Key words: water absorbing resin, liquid absorption performance, water retention, simulated sweat, personal protective clothing

CLC Number: 

  • TQ326.4

Tab.1

Simulated acid sweat, alkaline sweat formulag/L"

汗液名称 C6H9N3O2·HCl NaCl NaH2PO4·2H2O Na2HPO4·2H2O
模拟酸汗液 0.50 5.00 2.20 0.00
模拟碱汗液 0.50 5.00 0.00 2.50

Tab.2

Different concentrations of simulated acid sweat formulag/L"

汗液浓度 C6H9N3O2·HCl·H2O NaCl NaH2PO4·2H2O
1.0倍浓度 0.50 5.00 2.20
1.5倍浓度 0.75 7.50 3.30
2.0倍浓度 1.00 10.00 4.40
2.5倍浓度 1.25 12.50 5.50
3.0倍浓度 1.50 15.00 6.60

Tab.3

Different concentrations of simulated alkaline sweat formulag/L"

汗液浓度 C6H9N3O2·HCl·H2O NaCl Na2HPO4·2H2O
1.0倍浓度 0.50 5.00 2.50
1.5倍浓度 0.75 7.50 3.75
2.0倍浓度 1.00 10.00 5.00
2.5倍浓度 1.25 12.50 6.25
3.0倍浓度 1.50 15.00 7.50

Fig.1

Infrared spectrum of water absorbing resin"

Fig.2

SEM images of water absorbing resin before(a) and after(b) water absorption(×300)"

Fig.3

Effect of deionized water(a),simulated acid sweat(b) and simulated alkali sweat(c)at different temperature onabsorption rate"

Fig.4

Effects of simulated acid sweat(a)and simulated alkali sweat(b)of different mass concentrations on absorption rate"

Fig.5

Effect of sodium chloride concentration on liquid absorption rate"

Fig.6

Effects of simulated acid protein(a)and simulated basic protein(b)on aspiration rate"

Fig.7

Repeat water absorption of water absorbing resin"

[1] KJELLSTROMT, HOLMER I, LEMKE B. Workplace heat stress, health and prodiictivity an increasing challenge for low and middle-income countries during climate change[J]. Health Action, 2009,2(1):46-51.
[2] 韩增旺, 唐世君, 赖军. 国内外冷却服装的发展现状及关键技术[J]. 中国个体防护装备, 2009(4):11-14.
HAN Zengwang, TANG Shijun, LAI Jun. Development status and key technologies of cooling garments at home and abroad[J]. China Personal Protective Equipment, 2009(4):11-14.
[3] 李利娜, 钱晓明, 徐杰. 冷却服装的发展现状及应用[J]. 中国个体防护装备, 2008(2):20-21.
LI Lina, QIAN Xiaoming, XU Jie. The development status and application of cooling garments[J]. China Personal Protective Equipment, 2008(2):20-21.
[4] 陈柔曦. 基于相变材料热缓冲作用的高温防护服设计[D]. 苏州:苏州大学, 2013:1-30.
CHEN Rouxi. Design of high temperature protective clothing based on the thermal buffering effect of phase change materials[D]. Suzhou: Soochow University, 2013:1-30.
[5] 何骞. 基于相变材料的个体冷却服及其降温性能研究[D]. 西安:西安科技大学, 2018:2-3.
HE Qian. Research on individual cooling suit based on phase change material and its cooling performance [D]. Xi'an: Xi'an University of Science and Technology, 2018:2-3.
[6] 张富丽. 热防护服的微气候冷却系统综述[J]. 中国个体防护装备, 2002(3):29-30.
ZHANG Fuli. Overview of microclimate cooling system for thermal protective clothing[J]. China Personal Protective Equipment, 2002 (3):29-30.
[7] GAO C, KUKLANE K, HOLMER I. Cooling vests with phase change materials: the effects of melting temperature on heat strain allwviation in an extremely hot environment[J]. European Journal of Applied Physiology, 2011,111(6):1207-1216.
pmid: 21127896
[8] 张东霞. 相变材料在调温服装中的应用研宄[D]. 北京:北京服装学院, 2006: 2-15.
ZHANG Dongxia. Research on the application of phase change materials in tempering clothing[D]. Beijing: Beijing Institute of Fashion Technology, 2006: 2-15.
[9] 方贵银, 邢琳, 杨帆, 等. 相变蓄冷材料制备及热性能研究[J]. 低温与超导, 2006,34(1):68-70.
FANG Guiyin, XING Lin, YANG Fan, et al. Study on Preparation and thermal performance of phase change cold storage materials[J]. Low Temperature and Superconductivity, 2006,34(1):68-70.
[10] 李夔宁, 郭宁宁, 王贺. 有机相变蓄冷复合材料的研究[J]. 化工新型材料, 2009,37(4):87-88.
LI Yanning, GUO Ningning, WANG He. Research on organic phase change cold storage composites[J]. New Chemical Materials, 2009,37(4):87-88.
[11] SONG H S, KWON O S, KIM J H, et al. 3D hydrogel scaffold doped with 2D graphene materials forbiosensors and bioelectronics.[J]. Biosensors & Bioelectronics. 2016,89:187.
pmid: 27020065
[12] 张泽. 丙烯酸—衣康酸共聚吸水性材料的制备与性能研究[D]. 武汉:武汉工程大学, 2015:3-8.
ZHANG Ze. Preparation and properties of acrylic acid-itaconic acid copolymer water-absorbing materials[D]. Wuhan:Wuhan University of Technology, 2015:3-8.
[13] 吴振刚. 高吸水性树脂的合成、改性研究[D]. 西安:第四军医大学, 2008:1-25.
WU Zhengang. Synthesis and modification of superabsorbent resin [D]. Xi'an:Fourth Military Medical University, 2008:1-25.
[14] 张小红. 高吸水性树脂的结构设计与性能研究[D]. 西安:西北工业大学, 2006:3-27.
ZHANG Xiaohong. Structural design and properties of super absorbent resin [D]. Xi'an:Northwestern Polytechnical University, 2006:3-27.
[15] 袁昆. 高分子水凝胶材料及吸水膨胀弹性体的制备与性能研究[D]. 兰州:西北师范大学, 2005:1-19.
YUAN Kun. Preparation and properties of polymer hydrogel materials and water-swellable elastomers[D]. Lanzhou:Northwest Normal University, 2005:1-19.
[1] WU Wei, CHEN Xiaowen, ZHONG Yi, XU Hong, MAO Zhiping. Role of sodium sulfate in low add-on pad-cure-steam reactive dyeing process [J]. Journal of Textile Research, 2020, 41(05): 85-93.
[2] . Synthesis and characterization of novel cellulose-based superabsorbent resin using waste flax yarns [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(12): 22-0.
[3] ZHANG Yi-ping;XU Rui-chao;CHEN Li-na. Effect of abnormal degree of fiber cross-section on the moisture-transfer and dry-fast properties of the fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(12): 70-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!