Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 174-180.doi: 10.13475/j.fzxb.20191104607
• Comprehensive Review • Previous Articles Next Articles
ZHANG Yanyan1,2, ZHAN Luyao1, WANG Pei2, GENG Junzhao2, FU Feiya2, LIU Xiangdong2()
CLC Number:
[1] | 高思梦, 王鸿博, 杜金梅, 等. 甜菜碱聚合物的合成及其在棉织物抗菌整理中的应用[J]. 纺织学报, 2020,41(2):89-94. |
GAO Simeng, WANG Hongbo, DU Jinmei, et al. Synjournal of polybetaine antibacterial agent and its applications in cotton textiles finishing[J]. Journal of Textile Research, 2020,41(2):89-94. | |
[2] | XI G H, FAN W C, WANG L, et al. Fabrication of asymmetrically superhydrophobic cotton fabrics via mist copolymerization of 2, 2, 2-trifluoroethyl methacry-late[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2015,53(16):1862-1871. |
[3] | WANG L, XI G H, WAN S J, et al. Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate[J]. Cellulose, 2014,21(4):2983-2994. |
[4] | 赵兵, 黄小萃, 祁宁, 等. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020,41(3):188-196. |
ZHAO Bing, HUANG Xiaocui, QI Ning, et al. Research progress of antibacterial cotton fabric treated with silvernanoparticles based on covalent bond[J]. Journal of Textile Research, 2020,41(3):188-196. | |
[5] | MOHAMED A L, HASSABO A G, SHAARAWY S, et al. Benign development of cotton with antibacterial activity and metal sorpability through introduction amino triazole moieties and AgNPs in cotton structure pre-treated with periodate[J]. Carbohydrate Polymers, 2017,178:251-259. |
[6] | 周莉, 王鸿博, 傅佳佳, 等. 应用电子束辐照技术的棉织物抗菌整理工艺优化[J]. 纺织学报, 2017,38(10):81-87. |
ZHOU Li, WANG Hongbo, FU Jiajia, et al. Optimization on antibacterial finishing process of cottonfabricbased on electron beam irradiation[J]. Journal of Textile Research, 2017,38(10):81-87. | |
[7] | 席光辉. “雾聚合” 法制备自修复超疏水性及抗菌性棉织物表面的研究[D]. 杭州:浙江理工大学, 2016: 14-16. |
XI Guanghui. Study of healable super hydrophobicity and antimicrobial property of cotton surface modified via ″mist polymerization″[D]. Hangzhou: Zhejiang Sci-Tech University, 2016: 14-16. | |
[8] | LEE H J, YEO S Y, JEONG S H. Antibacterial effect of nanosized silver colloidal solution on textile fabrics[J]. Journal of Materials Science, 2003,38(10):2199-2204. |
[9] | XU H, SHI X, MA H, et al. The preparation and antibacterial effects of dopa-cotton/AgNPs[J]. Applied Surface Science, 2011,257(15):6799-6803. |
[10] |
ZHANG D, CHEN L, ZANG C, et al. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability[J]. Carbohydrate Polymers, 2013,92(2):2088-2094.
doi: 10.1016/j.carbpol.2012.11.100 pmid: 23399262 |
[11] | ALTINISIK A, BOZAC E, AKAR E, et al. Development of antimicrobial cotton fabric using bionanocomposites[J]. Cellulose, 2013,20(6):3111-3121. |
[12] | ZHANG F, WU X, CHEN Y, et al. Application of silver nanoparticles to cotton fabric as an antibacterial textile finish[J]. Fibers and Polymers, 2009,10(4):496-501. |
[13] | YUE X, LIN H, YAN T, et al. Synjournal of silver nanoparticles with sericin and functional finishing to cotton fabrics[J]. Fibers and Polymers, 2014,15(4):716-722. |
[14] | LIU H, LEE Y Y, NORSTEN T B, et al. In situ formation of anti-bacterial silver nanoparticles on cotton textiles[J]. Journal of Industrial Textiles, 2014,44(2):198-210. |
[15] | KIM S S, PARK J E, LEE J. Properties and antimicrobial efficacy of cellulose fiber coated with silver nanoparticles and 3-mercaptopropyltrimethoxysilane(3-MPTMS)[J]. Journal of Applied Polymer Science, 2011,119(4):2261-2267. |
[16] | BUDAMA L, CAKIR BA, TOPEL O, et al. A new strategy for producing antibacterial textile surfaces using silver nanoparticles[J]. Chemical Engineering Journal, 2013,228:489-495. |
[17] | HEBEISH A, El-SHAFEI A, SHARAF S, et al. Novel precursors for green synjournal and application of silver nanoparticles in the realm of cotton finishing[J]. Carbohydrate Polymers, 2011,84(1):605-613. |
[18] | XU Q, KE X, CAI D, et al. Silver-based, single-sided antibacterial cotton fabrics with improved durability via an L-cysteine binding effect[J]. Cellulose, 2018,25(3):2129-2141. |
[19] | LIU Hanzhou, LV Ming, DENG Bo, et al. Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations[J]. Scientific Reports, 2014,4:5920. |
[20] | SEDIGHI A, MONTAZER M, SAMADI N. Synjournal of nano Cu2O on cotton: morphological, physical, biological and optical sensing characterizations[J]. Carbohydrate Polymers, 2014,110:489-498. |
[21] | 吕鹏召. 铜纳米粒子及复合材料的制备, 表征以及抗菌性, 催化加氢性能的研究[D]. 天津:天津理工大学, 2019: 24-26. |
LV Pengzhao. Preparation, characterization, antibacterial and catalytic hydrogenation properties of copper nanoparticles and composites[D]. Tianjin: Tianjin University of Technology, 2019: 24-26. | |
[22] | 田艳红, 王建坤, 杨菊花, 等. 载铜离子抗菌剂的制备及其络合棉织物的性能[J]. 纺织学报, 2015,36(12):79-84. |
TIAN Yanhong, WANG Jiankun, YANG Juhua, et al. Preparation of antibacterial agent loaded with Cu2+ and performance of cotton fabric complexed with agen[J]. Journal Textile Research, 2015,36(12):79-84. | |
[23] | CADY N C, BEHNKE J L, STRICKLAND A D. Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid andefficient inhibition of amulti-drug resistant wound pathogen, a. baumannii, and mammalian cell biocompatibility in vitro[J]. Advanced Functional Materials, 2011,21(13):2506-2514. |
[24] | SEDIGHI A, MONTAZER M, HEMMATINEJAD N. Copper nanoparticles on bleached cotton fabric: in situ synjournal and characterization[J]. Cellulose, 2014,21(3):2119-2132. |
[25] | GOUDA M, HEBEISH A. Preparation and evaluation of CuO/chitosan nanocomposite for antibacterial finishing cotton fabric[J]. Journal of Industrial Textiles, 2010,39(3):203-214. |
[26] | XU Q, DUAN P, ZHANG Y, et al. Double protectcopper nanoparticles loaded on L-cysteine modifiedcotton fabric with durable antibacterial properties[J]. Fibers and Polymers, 2018,19(11):2324-2334. |
[27] | XU Q, KE X, GE N, et al. Preparation of coppernanoparticles coated cotton fabrics with durable antibacterial properties[J]. Fibers and Polymers, 2018,19(5):1004-1013. |
[28] | SELVAM S, SUNDRARAJAN M. Functionalization of cotton fabric with PVP/ZnO nanoparticles for improved reactive dyeability and antibacterial activity[J]. Carbohydrate Polymers, 2012,87(2):1419-1424. |
[29] | PERELSHTEIN I, RUDERMAN E, PERKAS N, et al. Chitosan and chitosan-ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity[J]. Journal of Materials Chemistry B, 2013,1(14):1968-1976. |
[30] | SHAFEI A E, ABOU-OKEIL A. ZnO/carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric[J]. Carbohydrate Polymers, 2011,83(2):920-925. |
[31] |
MANNA J, BEGUM G, KUMAR K P, et al. Enabling antibacterial coating via bioinspired mineralization of nanostructured ZnO on fabrics under mild cond-itions[J]. ACS Applied Materials & Interfaces, 2013,5(10):4457-4463.
pmid: 23607588 |
[32] | ZHANG D, ZHANG G, CHEN L, et al. Multifunctional finishing of cotton fabric based on in situ fabrication of polymer-hybrid nanoparticles[J]. Journal of Applied Polymer Science, 2013,130(5):3778-3784. |
[33] | AKIR B A, BUDAMA L, TOPEL Ö, et al. Synjournal of ZnO nanoparticles using PS-b-PAA reverse micelle cores for UV protective, self-cleaning and antibacterial textile applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012,414:132-139. |
[34] |
YUVAKKUMAR R, SURESH J, NATHANAEL A J, et al. Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.)peel extract and its antibacterial applications[J]. Materials Science and Engineering: C, 2014,41:17-27.
doi: 10.1016/j.msec.2014.04.025 |
[35] | VIGNESHWARAN N, KUMAR S, KATHE A A, et al. Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites[J]. Nanotechnology, 2006,17(20):5087-5095. |
[36] | PANDIMURUGAN R, THAMBIDURAI S. Seaweed-ZnO composite for better antibacterial properties[J]. Journal of Applied Polymer Science, 2014,131(20):40948. |
[37] |
ALADPOOSH R, MONTAZER M. The role of cellulosic chains of cotton in biosynjournal of ZnO nanorods producing multifunctional properties: mechanism, characterizations and features[J]. Carbohydrate Polymers, 2015,126:122-129.
doi: 10.1016/j.carbpol.2015.03.036 pmid: 25933530 |
[38] | IBRAHIM N A, REFAIE R, AHMED A F. Novel approach for attaining cotton fabric with multi-functional properties[J]. Journal of Industrial Textiles, 2010,40(1):65-83. |
[39] | KARIMI L, YAZDANSHENAS M E, KHAJAVI R, et al. Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity[J]. Cellulose, 2014,21(5):3813-3827. |
[40] | RAJENDRAN V, DHINESHBABU N R, KANNA R R, et al. Enhancement of thermal stability, flame retardancy, and antimicrobial properties of cotton fabrics functionalized by inorganic nanocomposites[J]. Industrial & Engineering Chemistry Research, 2014,53(50):19512-19524. |
[41] |
DOAKHAN S, MONTAZER M, RASHIDI A, et al. Influence of sericin/TiO2 nanocomposite on cotton fabric: part 1. enhanced antibacterial effect[J]. Carbohydrate Polymers, 2013,94(2):737-748.
pmid: 23544628 |
[42] |
GALKINA O L, SYCHEVA A, BLAGODATSIY А, et al. The sol-gel synjournal of cotton/TiO2 composites and their antibacterial properties[J]. Surface and Coatings Technology, 2014,253:171-179.
doi: 10.1016/j.surfcoat.2014.05.033 |
[43] |
WANG L, DING Y, SHEN Y, et al. Study on properties of modified nano-TiO2 and its application on antibacterial finishing of textiles[J]. Journal of Industrial Textiles, 2014,44(3):351-372.
doi: 10.1177/1528083713487758 |
[44] |
LEE D B N, ROBERTS M, BLUCHEL C G, et al. Zirconium: biomedical and nephrological applica-tions[J]. Asaio Journal, 2010,56(6):550-556.
pmid: 21245802 |
[45] |
GOUDA M. Nano-zirconium oxide and nano-silver oxide/cotton gauze fabrics for antimicrobial and wound healing acceleration[J]. Journal of Industrial Textiles, 2012,41(3):222-240.
doi: 10.1177/1528083711414960 |
[46] | GOUDA M, ALJAAFARI A, AL-FAYZ Y, et al. Preparation and characterization of some nanometal oxides using microwave technique and their application to cotton fabrics[J]. Journal of Nanomaterials, 2015,16(1):163-172. |
[47] |
DHINESHBABU N R, MANIVASAKAN P, KARTHIK A, et al. Hydrophobicity, flame retardancy and antibacterial properties of cotton fabrics functionalised with MgO/methyl silicate nanocomposites[J]. RSC Advances, 2014,4(61):32161-32173.
doi: 10.1039/c4ra03348e |
[48] |
RAI M, YADAV A, GADE A. Silver nanoparticles as a new generation of antimicrobials[J]. Biotechnology Advances, 2009,27(1):76-83.
doi: 10.1016/j.biotechadv.2008.09.002 |
[49] |
SHAHIDI S, GHORANNEVISS M, MOAZZENCHI B, et al. Investigation of antibacterial activity on cotton fabrics with cold plasma in the presence of a magnetic field[J]. Plasma Processes and Polymers, 2007,4(S1):S1098-S1103.
doi: 10.1002/(ISSN)1612-8869 |
[50] |
MONTAZER M, ALIMOHAMMADI F, SHAMEI A, et al. Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing[J]. Colloids and Surfaces B: Biointerfaces, 2012,89:196-202.
doi: 10.1016/j.colsurfb.2011.09.015 pmid: 21978552 |
[51] |
PERELSHTEIN I, RUDERMAN Y, PERKAS N, et al. The sonochemical coating of cotton withstands 65 washing cycles at hospital washing standards and retains its antibacterial properties[J]. Cellulose, 2013,20(3):1215-1221.
doi: 10.1007/s10570-013-9929-z |
[52] |
ABRAMOV O V, GEDANKEN A, KOLTYPIN Y, et al. Pilot scale sonochemical coating of nanoparticles onto textiles to produce biocidal fabrics[J]. Surface and Coatings Technology, 2009,204(5):718-722.
doi: 10.1016/j.surfcoat.2009.09.030 |
[53] |
GEDANKEN A, MOLLA K, BLANES M, et al. Enzymatic pre-treament as a means of enhancing the antibactrial activity and stability of ZnO nanoparticles sono-chemically coated on cotton fabrics[J]. Journal of Materials Chemistry, 2012,22:10736-10742.
doi: 10.1039/c2jm31054f |
[54] |
PTKOVA P, FRANCESKO A, FERNANDES M M, et al. Sonochemical coating of textiles with hybrid ZnO/ch-itosan antimicrobial nanoparticles[J]. ACS Applied Materials & Interfaces, 2014,6(2):1164-1172.
doi: 10.1021/am404852d |
[55] |
UGR S S, SARIISIK M, AKTAS A H, et al. Modifying of cotton fabric surface with nano-ZnO multilayer films by layer-by-layer deposition method[J]. Nanoscale Research Letters, 2010,5(7):1204-1210.
doi: 10.1007/s11671-010-9627-9 pmid: 20596450 |
[1] | HOU Wenshuang, MIN Jie, JI Feng, ZHANG Jianxiang, SU Meng, HE Ruixian. Influence of fabric tightness and anti-crease finishing on wrinkle recovery of pure cotton woven fabrics [J]. Journal of Textile Research, 2021, 42(01): 118-124. |
[2] | ZENG Fanxin, QIN Zongyi, SHEN Yueying, CHEN Yuanyu, HU Shuo. Preparation and flame retardant properties of self-extinguishing cotton fabrics by spray-assisted layer-by-layer self-assembly technology [J]. Journal of Textile Research, 2021, 42(01): 103-111. |
[3] | YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9. |
[4] | LI Junyu, JIANG Peiqing, ZHANG Wenqi, LI Wenbin. Effect of atomic layer deposition technology on functionalization of cellulose membrane [J]. Journal of Textile Research, 2020, 41(12): 26-30. |
[5] | MA Yue, GUO Jing, YIN Juhui, ZHAO Miao, GONG Yumei. Preparation and characterization of cellulose/dialdehyde cellulose/Antarctic krill protein antibacterial fibers [J]. Journal of Textile Research, 2020, 41(11): 34-40. |
[6] | JIANG Xingmao, LIU Qi, GUO Lin. Structure and antibacterial properties of silica coated silver-copper nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 102-108. |
[7] | WANG Bo, FAN Lihua, YUAN Yun, YIN Yunjie, WANG Chaoxia. Preparation and electric storage performance of stretchable polypyrrole / cotton knitted fabric [J]. Journal of Textile Research, 2020, 41(10): 101-106. |
[8] | CHEN Wendou, ZHANG Hui, CHEN Tianyu, WU Hailiang. Self-cleaning properties of titanium dioxide modified polyester/cotton blend fabrics [J]. Journal of Textile Research, 2020, 41(07): 122-128. |
[9] | LIU Guojin, SHI Feng, CHEN Xinxiang, ZHANG Guoqing, ZHOU Lan. Preparation of polyurethane/phase change wax functional finishing agents for heat storage and temperature regulation and their applications on cotton fabrics [J]. Journal of Textile Research, 2020, 41(07): 129-134. |
[10] | JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20. |
[11] | CHENG Shijie, WANG Chenyang, ZHANG Hongwei, ZUO Danying. Effect of boron nitrogen doped carbon dots on ultraviolet-protection of cotton fabrics [J]. Journal of Textile Research, 2020, 41(06): 93-98. |
[12] | WANG Tingting, LIU Liang, CAO Xiuming, WANG Qingqing. Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers [J]. Journal of Textile Research, 2020, 41(05): 1-7. |
[13] | ZHOU Qingqing, CHEN Jiayi, QI Zhenming, CHEN Weijian, SHAO Jianzhong. Preparation and characterization of flame retardant and antibacterial cotton fabric [J]. Journal of Textile Research, 2020, 41(05): 112-120. |
[14] | HU Chengye, MIAO Runwu, HAN Xiao, HONG Jianhan, GIL Ignacio. Effect of polyvinyl alcohol on durability of polyaniline conductive layer on poly(p-phenylene terephthamide) yarn surface [J]. Journal of Textile Research, 2020, 41(04): 91-97. |
[15] | WANG Xiaofei, WAN Ailan. Preparation of polypyrrole/silver conductive polyester fabric by ultraviolet exposure [J]. Journal of Textile Research, 2020, 41(04): 112-116. |
|