Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (08): 15-21.doi: 10.13475/j.fzxb.20191202007

• Fiber Materials • Previous Articles     Next Articles

Effect of plasma treatment on adhesion performance of polytetrafluoroethylene film

CHEN Qian1, LIAO Zhen1, XU Ming2, ZHU Yawei1,3()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. Changzhou Hi Levi Textile Technology, Co., Ltd., Changzhou, Jiangsu 213125, China
    3. National Engineering Laboratory for Modern Silk, Suzhou, Jiangsu 215123, China
  • Received:2019-12-09 Revised:2020-05-09 Online:2020-08-15 Published:2020-08-21
  • Contact: ZHU Yawei E-mail:yaweizhu@suda.edu.cn

Abstract:

In order to improve the adhesion performance of polytetrafluoroethylene (PTFE) film, this research studied the effect of oxygen plasma treatment on the stripping strength and water contact angle of the film surface, and compared the adhesive strength of films treated by oxygen, nitrogen and argon plasma. In addition, the changes of surface element, morphology and roughness were measured by means of X-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy. The results show that the stripping strength is increased by 539.8% and the contact angle is increased by 11.4° (up to 120.4°) when the PTFE film is treated with nitrogen plasma. When the discharge magnitude is below 36 kJ, the stripping strength of the oxygen-treated PTFE film increases exponentially with the increase of discharge power. When the discharge magnitude is higher, the pattern of lotus leaf with the concave and convex grooves is formed on the PTFE film surface, and the shape of lotus leaf of PTFE film determines the film adhesion and hydrophobicity.

Key words: polytetrafluoroethylene film, plasma treatment, film modification, adhesion performance, surface etching

CLC Number: 

  • TM89

Tab.1

Processing condition of PTFE film with plasma treatment"

样品
编号
气体
种类
功率/
W
时间/
min
气体流量/
(cm3·min-1)
放电量/
kJ
1# O2 300 2 5 36.0
2# N2 300 2 5 36.0
3# Ar 300 2 5 36.0
4# O2 40 2 5 4.8
5# O2 300 2 40 36.0
6# O2 300 1 5 18.0
7# O2 300 2 10 36.0
8# O2 300 2 20 36.0
9# O2 300 2 30 36.0
10# O2 300 2 60 36.0
11# O2 70 2 5 8.4
12# O2 100 2 5 12.0
13# O2 200 2 5 24.0
14# O2 300 3 5 54.0
15# O2 300 4 5 72.0
16# O2 300 5 5 90.0

Fig.1

XPS spectra of PTFE films with different gas plasma treatment"

Fig.2

C1s spectra of PTFE films with N2 plasma treatment"

Fig.3

SEM images of PTFE film with O2 plasma treatment at different discharge capacity (×25 000). (a) Untreated PTFE film; (b) 4#;(c) 5#;(d) 6#"

Fig.4

SEM images of PTFE film with different gas plasma treatment (×25 000). (a) Untreated PTFE film;(b) 1#;(c) 2#; (d) 3#"

Fig.5

AFM images of PTFE film with different gas plasma treatment. (a) Untreated PTFE film; (b) 1#; (c) 2#; (d) 3#"

Fig.6

Influence of treatment power on stripping strength and contact angle of PTFE composite film"

Fig.7

Influence of oxygen gas flow on stripping strength and contact angle of PTFE composite film"

Fig.8

Influence of time on stripping strength and contact angle of PTFE composite film"

Fig.9

Influence on stripping strength and contact angle of PTFE composite film with different gas plasma treatment"

[1] 郭玉海, 朱海霖, 王峰, 等. 聚四氟乙烯滤膜的发展及应用[J]. 纺织学报, 2015,36(9):149-153.
GUO Yuhai, ZHU Hailin, WANG Feng, et al. Development and application of polytetrafluoroethylene filtration membrane[J]. Journal of Textile Research, 2015,36(9):149-153.
[2] 张恒, 甄琪, 王俊南, 等. 梯度结构耐高温纤维过滤材料的结构与性能[J]. 纺织学报, 2016,37(5):17-22.
ZHANG Heng, ZHEN Qi, WANG Junnan, et al. Structure and performance of high temperature resistant fibrous filters with gradient structure[J]. Journal of Textile Research, 2016,37(5):17-22.
[3] 罗平艳, 蒋金华, 陈南梁, 等. 新型氟乙烯乙烯基醚树脂增强膜材料的制备及其力学性能[J]. 纺织学报, 2018,39(7):50-54.
LUO Pingyan, JIANG Jinhua, CHEN Nanliang, et al. Development of novel fluoroethylene vinyl ether reinforcement membrane and its mechanical proper-ties[J]. Journal of Textile Research, 2018,39(7):50-54.
[4] HORI K, FUJIMOTO S, TOGASHI Y, et al. Improvement in molecular-level adhesive strength of PTFE film treated by atmospheric plasma combined processing[J]. IEEE Transactions on Industry Applications, 2018,55(1):825-832.
doi: 10.1109/TIA.2018.2868035
[5] 张浩凡, 宋双, 周明, 等. 不同亲水基团亲水改性PTFE中空纤维膜[J]. 现代化工, 2017,37(11):106-109.
ZHANG Haofan, SONG Shuang, ZHOU Ming, et al. Modification of PTFE hollow fiber membrane by different hydrophilic groups[J]. Modern Chemical Industry, 2017,37(11):106-109.
[6] 李成才, 王峰, 朱海霖, 等. 双氨基有机硅后交联聚丙烯酸改性PTFE平板膜及其分离性能研究[J]. 膜科学与技术, 2018,38(3):83-90.
LI Chengcai, WANG Feng, ZHU Hailin, et al. Study on hydrophilic modification and separation performance of PTFE flat membrane by polyacrylic acid post-crosslinked with bisamino organosilicone[J]. Membrane Science and Technology, 2018,38(3):83-90.
[7] LIU K, LEI J, ZHENG Z, et al. The hydrophilicity improvement of polytetrafluoroethylene by Ar plasma jet: the relationship of hydrophilicity, ambient humidity and plasma parameters[J]. Applied Surface Science, 2018,458:183-190.
[8] 王振欣, 王月然, 梁小平, 等. 聚合物表面接触角与低温等离子体辐照生成自由基的相关性[J]. 纺织学报, 2011,32(7):1-7.
WANG Zhenxin, WANG Yueran, LIANG Xiaoping, et al. Correlation between contact angle and radical concentration on polymer surface generated by cold plasma irradiation[J]. Journal of Textile Research, 2011,32(7):1-7.
[9] OHKUBO Y, SHIBAHARA M, ISHIHARA K, et al. Effect of rubber compounding agent on adhesion strength between rubber and heat-assisted plasma-treated polytetrafluoroethylene[J]. The Journal of Adhesion, 2019,95(3):242-257.
[10] 王荣昌, 赵悦, 马翠香, 等. 混合单体对等离子体法改性PTFE膜微生物亲和性能的影响[J]. 环境科学研究, 2020,33(2):465-470.
WANG Rongchang, ZHAO Yue, MA Cuixiang, et al. Effect of mixed monomer on microbial affinity of PTFE membrane with plasma surface modification[J]. Research of Environmental Sciences, 2020,33(2):465-470.
[11] YONG J L, FANG Y, CHEN F, et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: separating oil from water and corrosive solutions[J]. Applied Surface Science, 2016,389:1148-1155.
[12] 占彦龙, 李文, 李宏, 等. 激光微加工技术制备浸润性可控聚四氟乙烯超疏水表面[J]. 高分子材料科学与工程, 2018,34(4):147-151.
ZHAN Yanlong, LI Wen, LI Hong, et al. Laser micromachining technology for the preparation of super-hydrophobic surfaces with controllable wettability of PTFE[J]. Polymer Materials Science & Engineering, 2018,34(4):147-151.
[13] NICOLAS V, HOWARD F, FRANCOIS R. Selected effect of the ions and the neutrals in the plasma treatment of PTFE surfaces: an OES-AFM-contact angle and XPS study[J]. Plasma Process Polymers, 2005,2(6):493-500.
[14] WILSON D J, WILLIAMS R L, POND R C. Plasma modification of PTFE surfaces: part I: surfaces immediately following plasma treatment[J]. Surface and Interface Analysis, 2001,31:385-396.
[15] 郝致远, 汲胜昌, 宋莹. 氩等离子体射流对聚四氟乙烯表面改性的研究[J]. 西安交通大学学报, 2014,48(4):59-67.
HAO Zhiyuan, JI Shengchang, SONG Ying. Experimental research on surface modification of polytetrafluoroethylene by Ar atmospheric pressure plasma jet[J]. Journal of Xi'an Jiaotong University, 2014,48(4):59-67.
[16] ALENKI V, MIRAN M, ANTON Z. XPS characterization of PTFE after treatment with RF oxygen and nitrogen plasma[J]. Surface & Interface Analysis, 2008,40:661-663.
[17] VANDENCASTEELE N, BROZE B, COLLETTE S, et al. Evidence of the synergetic role of charged species and atomic oxygen in the molecular etching of PTFE surfaces for hydrophobic surface synjournal[J]. Langmuir, 2010,26(21):16503-16509.
doi: 10.1021/la101380j pmid: 20973585
[18] VESEL A, MOZETIC M, BALAT-PICHELIN M. Oxygen atom density in microwave oxygen plasma[J]. Vacuum, 2007,81(9):1088-1093.
[1] YU Jia, XIN Binjie, ZHUO Tingting, ZHOU Xi. Preparation and characterization of Cu/polypyrrole-coated wool fabrics for high electrical conductivity [J]. Journal of Textile Research, 2021, 42(01): 112-117.
[2] ZHUANG Qun, ZHANG Fei, DU Zhaofang, JIANG Hua. Preparation of modified aramid fiber and epoxy resin composites and stab resistance thereof [J]. Journal of Textile Research, 2019, 40(12): 98-103.
[3] ZHU Jinming, QIAN Jianhua, SUN Liying, LI Zhengping, PENG Huimin. Properties of functionalized composite polyester fabric prepared from silver nanowires of high aspect ratio [J]. Journal of Textile Research, 2019, 40(11): 113-118.
[4] . Cold plasma treatment and aging properties of aramid fiber [J]. Journal of Textile Research, 2018, 39(11): 73-78.
[5] . Mechanical and thermal properties of phase change microcapsules with carbon nanotubes [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 119-125.
[6] . Preparation and properties of polylactic acid coated phase change material composite fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 67-72.
[7] ZHU Xuzhao;IONG Jie;XU Shuyan;SONG Yeping;HUO Pengfei. Influences of treatment conditions on properties of UHMWPE fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(06): 10-14.
[8] WANG Xiaochun;ZHAO Guoliang;HE Hao;ZHANG Cuiling. Blood compatibility of polyester textile modified by surface grafting [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(11): 84-87.
[9] JIANG Sheng. Properties of plasma treated UHMWPE/LDPE composites [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(9): 57-60.
[10] XIE Hong-de;WANG Hong-wei;LI Ning;ZHANG Wei-dong. Studies on change of properties of tussah fabric after graft modification by plasma treatment [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(5): 28-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!