Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (08): 9-14.doi: 10.13475/j.fzxb.20191202306

• Fiber Materials • Previous Articles     Next Articles

Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber

ZHAN Xiaoqing, LI Fengyan(), ZHAO Jian, LI Haiqiong   

  1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2019-12-09 Revised:2020-03-21 Online:2020-08-15 Published:2020-08-21
  • Contact: LI Fengyan E-mail:fengyanli@tiangong.edu.cn

Abstract:

Aiming at low melting point and easy creeping of ultrahigh molecular weight polyethy-lene (UHMWPE) fiber, the mechanical properties of UHMWPE at dry and wet heating was investigated, simulating the oilfield underground operation as the measurement conditions. The differential scanning calorimeter, thermal gravity, scanning electron microscopy, X-ray diffraction analyzer and energy dispersive spectrometer were used to characterize and analyze the heating property and microscopic images. The results show that with the etching by heat and treatment solution, obvious groove appears on the surface of the UHMWPE fibers. When treated with the same temperature, the loss in mechanical property is lower at wet heating than that at dry heating, especially when the fibers are wet heated at 70 ℃ for 30 d, the decrease of fibers strength could be controlled within 6%. However, with the increase of treatment temperature at a dry environment, the fibers strength decreases significantly, and particularly when the fibers are dry heated at 140 ℃ for 1 h, the maximum strength loss reaches 19.87%.

Key words: ultrahigh molecular weight polyethylene fiber, thermal stability, mechanical property, oilfield underground operation, high-performance fiber

CLC Number: 

  • TS101.3

Fig.1

Thermodynamic properties of UHMWPE. (a) TG-DTG curves; (b) DSC curve"

Tab.1

Mechanical properties of UHMWPE fibers treated with different time at 70 ℃"

处理时
间/d
断裂强
度/MPa
断裂强度
变化率/%
断裂伸长
率/%
断裂伸
长率变
化率/%
0 4 516±4.17 4.27±0.24
3 4 420±4.17 -2.1 4.80±0.44 +12.40
6 4 257±4.17 -5.7 4.30±0.13 +0.70
9 4 338±4.17 -3.9 4.48±0.15 +4.80
12 4 250±5.22 -5.9 4.76±0.19 +11.50
15 4 388±4.17 -2.8 4.93±0.13 +15.50
18 4 468±4.17 -1.1 4.77±0.14 +11.70
21 4 451±3.13 -1.4 4.85±0.09 +13.60
24 4 455±3.83 -1.4 4.83±0.11 +13.10
27 4 262±4.17 -5.6 4.56±0.11 +6.80
30 4 303±4.17 -4.7 4.52±0.16 +5.90

Fig.2

XRD spectra of UHMWPE fibers treated with different time"

Tab.2

Crystalline data of UHMWPE fibers treated with different time"

样品名称 2θ/(°) 半峰全宽 结晶度/%
UHMWPE原样 21.4 0.607 95.33
23.9 0.719
处理21 d 21.4 0.677 89.47
23.9 0.737
处理30 d 21.4 0.546 92.76
23.9 0.602

Fig.3

Effect of ageing temperature on UHMWPE fibers mechanical properties at wet-thermal treatment. (a) Break strength; (b) Elongation at break"

Tab.3

Content of metal element in different UHMWPE fibers%"

样品名称 Na Mg
UHMWPE原样 0.21 0.10
80 ℃处理 0.25 0.15
140 ℃处理 0.55 0.14

Fig.4

SEM images of UHMWPE fibers before and after wet-thermal treatment (×1 800). (a) Raw UHMWPE;(b) Treatment for 30 d at 70 ℃; (c) Treatment for 1 h at 140 ℃"

Fig.5

Mechanical properties of UHMWPE fibers after dry-thermal treatment at different temperature. (a) Break strength; (b) Elongation at break"

Fig.6

Mechanical properties UHMWPE before and after dry-thermal treatment at different time. (a) Break strength; (b) Elongation at break"

Fig.7

SEM images of UHMWPE fibers after dry-thermal treatment at 130 ℃ with different time(×1 800)"

[1] 范立冬, 张治钢, 肖南, 等. 自然老化对超高分子量聚乙烯材料防护性能影响的实验研究[J]. 中国个体防护装备, 2018(1):36-39.
FAN Lidong, ZHANG Zhigang, XIAO Nan, et al. Experimental study on the effect of natural ageing on the protective performance of ultrahigh molecular weight polyethylene[J]. China Personal Protective Equipment, 2018(1):36-39.
[2] 陈磊, 徐志伟, 李嘉禄, 等. 防弹复合材料结构及其防弹机理[J]. 材料工程, 2010(11):94-100.
CHEN Lei, XU Zhiwei, LI Jialu, et al. Structure and bullet-proof mechanism of ballistic composites[J]. Journal of Materials Engineering, 2010(11):94-100.
[3] 肖文莹, 郭万涛, 李想. 超高分子量聚乙烯纤维增强防弹复合材料研究进展[J]. 材料开发与应用, 2019,34(2):131-138.
XIAO Wenying, GUO Wantao, LI Xiang. The progress of UHMWPE fiber-reinforced ballistic composites[J]. Development and Application of Material, 2019,34(2):131-138.
[4] 徐晨光, 孟家光, 魏冬, 等. 超高分子量聚乙烯纤维防割手套的性能综合分析[J]. 纺织科学与工程学报, 2019,36(3):24-27.
XU Chenguang, MENG Jiaguang, WEI Dong, et al. Performance comprehensive analysis of ultrahigh molecular weight polyethylene fiber cut-resistant gloves[J]. Journal of Textile Science & Engineering, 2019,36(3):24-27.
[5] LI Wei, XIONG Dangsheng, ZHAO Xiaoduo, et al. Dynamic stab resistance of ultra-high molecular weight polyethylene fabric impregnated with shear thickening fluid[J]. Materials & Design, 2016(102):162-167.
[6] 张恒, 甄琪, 钱晓明, 等. 仿生树型超高分子量聚乙烯柔性防刺复合材料制备及其透湿性能[J]. 纺织学报, 2018,39(4):63-68.
ZHANG Heng, ZHEN Qi, QIAN Xiaoming, et al. Preparation and moisture permeability of ultra-high molecular weight polyethylene flexible stab-resistant composite with dendritic structure[J]. Journal of Textile Research, 2018,39(4):63-68.
[7] 邢京京, 钱晓明, 黄顺伟, 等. UHMWPE长丝加筋非织造布的制备及性能[J]. 丝绸, 2017,54(4):5-10.
XING Jingjing, QIAN Xiaoming, HUANG Shunwei, et al. The preparation and performance of the UHMWPE filament reinforced nonwoven[J]. Journal of Silk, 2017,54(4):5-10.
[8] LI Meng, LI Weiwei, MA Renliang, et al. Long UHMWPE fibers reinforced rigid polyurethane composites: an investigation in mechanical prope-rties[J]. European Polymer Journal, 2018(105):55-60.
[9] 艾承冲, 蒋佳, 陈世益. 超高分子量聚乙烯在骨科领域的应用及基础研究进展[J]. 复旦学报(医学版), 2016,43(6):717-723.
AI Chengchong, JIANG Jia, CHEN Shiyi. Application and research advance of ultra-high molecular weight polyethylene in orthopedics[J]. Fudan University Journal of Medical Sciences, 2016,43(6):717-723.
[10] ZHANG Kai, YANG Shangyou, YANG Shuye, et al. Different influence of Ti, PMMA, UHMWPE, and Co-Cr particles on peripheral blood monocytes during periprosthetic inflammation[J]. Journal of Biomedical Materials Research: Part A, 2015,103(1):358-364.
[11] 吴世臻, 肖长发, 安树林, 等. 超高分子量聚乙烯纤维热行为的研究[J]. 高分子材料科学与工程, 1995,11(3):108-111.
WU Shizhen, XIAO Changfa, AN Shulin, et al. Study on the thermal behavious of UHMWPE[J]. Polymer Materials Science & Engineering, 1995,11(3):108-111.
[12] 梁日辉, 都亚, 牧艺, 等. 紫外光辐照对超高分子量聚乙烯纤维结构与性能的影响[J]. 高分子材料科学与工程, 2014,30(8):85-90.
LIANG Rihui, DU Ya, MU Yi, et al. Effect of ultra-violet irradiation on structure and properties of ultra-high molecular weight polyethylene fibres[J]. Polymer Materials Science & Engineering, 2014,30(8):85-90.
[13] 李升芳, 谢葵, 包敏新, 等. 油井压裂纤维控砂工艺技术研究与应用[J]. 复杂油气藏, 2011,4(1):70-73.
LI Shengfang, XIE Kui, BAO Minxin, et al. Research on fiber composite sand control technique for oil well fracturing and its application[J]. Complex Hydrocarbon Reservoirs, 2011,4(1):70-73.
[14] 李常清, 袁姗, 刘晖, 等. 金属离子对PAN基碳纤维结构和性能的影响[J]. 北京化工大学学报(自然科学版), 2009,36(1):40-43.
LI Changqing, YUAN Shan, LIU Hui, et al. Influences of metal ions on the microstructure and mechanical properties of PAN-based carbon fibers[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2009,36(1):40-43.
[15] 罗峻, 邓华, 黎仲明, 等. 超高分子量聚乙烯纤维的拉伸热老化性能研究[J]. 纺织科技进展, 2017(5):9-11.
LUO Jun, DENG Hua, LI Zhongming, et al. Study on stretching and thermal aging property of ultrahigh molecular weight polyethylene fiber[J]. Progress in Textile Science & Technology, 2017(5):9-11.
[1] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[2] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[3] LIU Shuqiang, WU Jie, WU Gaihong, YIN Xiaolong, LI Fu, ZHANG Man. Surface modification of basalt fiber using nano-SiO2 [J]. Journal of Textile Research, 2020, 41(12): 37-41.
[4] WEN Xin, ZHANG Xuzhen, LI Yong, HUANG Wenjian, LU Chen. Study on water-initiated ring-opening polymerization technology of L-lactide [J]. Journal of Textile Research, 2020, 41(12): 21-25.
[5] YANG Yaru, SHEN Xiaojun, TANG Bolin, NIU Mei. Halogen-free flame retardant finishing of ultra-high molecular weight polyethylene fiber [J]. Journal of Textile Research, 2020, 41(11): 109-115.
[6] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[7] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
[8] LIU Xi, WANG Dong, ZHANG Liping, LI Min, FU Shaohai. Effect of low refractive resin on structure and properties of spun-dyed viscose fibers [J]. Journal of Textile Research, 2020, 41(07): 9-14.
[9] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[10] WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14.
[11] ZHU Weiwei, CAI Chong, ZHANG Cong, LONG Jiajie, SHI Meiwu. Effect of supercritical CO2 treatment temperature on structure and property of diacetate fiber [J]. Journal of Textile Research, 2020, 41(03): 8-14.
[12] DING Fang, REN Xuehong. Flame-retardant finishing of polyester fabrics by grafting phosphorus-nitrogen compounds [J]. Journal of Textile Research, 2020, 41(03): 100-105.
[13] WANG Xiaochun, ZHANG Jianfei, ZHANG Liping, WANG Nana, YAN Jinlong, ZHAO Guoliang. Influence of extreme hydrophobic dye structure on dyeing properties of ultrahigh molecular weight polyethylene fibers [J]. Journal of Textile Research, 2020, 41(03): 78-83.
[14] CUI Yifan, HOU Wei, ZHOU Qianxi, YAN Jun, LU Yanhua, HE Tingting. Influence of silk sericin temperature sensitive hydrogel on properties of cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 74-78.
[15] ZHANG Jiao, GAO Xuefeng, WANG Yuzhou, LIU Haihui, ZHANG Xingxiang. Preparation and properties of polyamide 66/amino-functionalized multi-walled carbon nanotubes fibers [J]. Journal of Textile Research, 2019, 40(11): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!