Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (09): 8-15.doi: 10.13475/j.fzxb.20191203408

• Fiber Materials • Previous Articles     Next Articles

Preparation and property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite films

TANG Feng1, YU Houyong2(), ZHOU Ying2, LI Yingzhan2, YAO Juming1, WANG Chuang1, JIN Wanhui3   

  1. 1. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Textiles Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Hubei Province Fibre Inspection Bureau, Wuhan, Hubei 430000, China
  • Received:2019-12-06 Revised:2020-06-02 Online:2020-09-15 Published:2020-09-25
  • Contact: YU Houyong E-mail:phdyu@zstu.edu.cn

Abstract:

Aiming to improve the antibacterial properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate copolyester) (PHBV) film, cellulose nanofibril (CNF) with different polar groups was used to produce CNF-Ag hybrid materials with different morphologies via the in situ reduction method, which was incorporated into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) matrix to get antibacterial high-barrier composite films. The morphology, crystallinity, thermal stability, chemical structure and antibacterial properties of samples were investigated and analyzed. The results show that the surface carboxyl group content of CNF-Ag hybrid can reach up to 1.21 mmol/g by introducing citric acid and ascorbic acid. CNF-Ag not only induces PHBV to generate hydrogen bond network, but also improves the crystallization behavior, with the tensile strength of the composite film being 66.7 MPa, the modulus of elasticity 7.6 GPa, and the antibacterial activity against Staphylococcus aureus 99%.

Key words: composite film, cellulose nanofibril, poly (3-hydroxybutyrate-co-3-hydroxyvalerate), nano silver, antibacterial ability, high barrier property

CLC Number: 

  • TQ352.8

Fig.1

Experimental route"

Fig.2

SEM images of fractured morphologies of different PHBV composite films"

Fig.3

UV-visible spectra of different PHBV composite films"

Fig.4

FT-IR spectra of different PHBV composite films"

Fig.5

X-ray diffraction spectra of PHBV composite films"

Fig.6

DSC curves of PHBV composite films. First cooling process; (b) Second heating process"

Tab.1

Hydrogen bond coefficient and crystallinity of PHBV composite films"

样品名称 羧基含量/
(mmol·g-1)
氢键系数 结晶度/%
PHBV/CNF-Ag 0.11 0.12±0.03 67.3±3.12
PHBV/CNF (4.5)-Ag 1.03 0.12±0.02 52.6±2.15
PHBV/CNF (7.5)-Ag 1.12 0.13±0.03 52.1±3.43
PHBV/CNFA-Ag 0.13 0.13±0.02 46.6±6.02
PHBV/CNFC-Ag 1.11 0.16±0.03 46.2±3.57
PHBV/CNFAC-Ag 1.21 0.18±0.03 35.4±1.89
PHBV/CNF(7.5)A-Ag 0.91 0.17±0.04 42.6±2.65

Fig.7

TGA (a), partial of TGA (b) and DTG (c) curves of PHBV composite films"

Tab.2

Mechanical properties and moisture transfer properties of PHBV composite films"

样品名称 拉伸强度/MPa 弹性模量/GPa 断裂伸长率/% 迁移量/(μg·kg-1) 吸水率/% 水蒸气透过率/
(10-14 kg·m·m-2·s-1·Pa-1)
异辛烷 乙醇
PHBV 10.2±0.3 0.1±0.3 1.78±0.13 107.0±0.5 83.9±9.8 10.06±0.02 7.63±0.04
PHBV/CNF-Ag 22.2±0.8 2.3±0.2 1.85±0.15 25.5±0.2 38.9±0.2 0.18±0.05 1.57±0.02
PHBV/CNF (4.5)-Ag 42.8±0.5 5.6±0.5 1.74±0.25 18.9±0.3 31.5±0.6 2.01±0.08 5.62±0.05
PHBV/CNF (7.5)-Ag 53.3±0.7 6.8±0.3 1.57±0.38 16.2±0.5 27.4±0.7 2.25±0.01 5.96±0.08
PHBV/CNFA-Ag 55.3±0.05 7.1±0.2 1.49±0.02 34.5±0.2 68.6±0.8 3.18±0.05 7.15±0.07
PHBV/CNFC-Ag 57.6±0.2 7.3±0.3 1.31±0.57 44.2±0.1 86.9±0.4 3.23±0.03 6.83±0.04
PHBV/CNFAC-Ag 66.7±0.6 7.6±0.3 1.29±0.89 35.4±0.6 61.5±0.3 3.91±0.09 8.13±0.06
PHBV/CNF (7.5)A-Ag 36.1±0.8 4.8±0.4 1.48±0.65 38.5±0.7 67.2±0.1 3.57±0.03 5.89±0.04

Fig.8

Bacteriostatic circle area of PHBV composite membrane in Staphylococcus aureus"

Tab.3

Antibacterial rate test result of PHBV composite films against staphylococcus aureus"

样品名称 抗菌率/%
PHBV/CNF-Ag 100.0
PHBV/CNF (4.5)-Ag 100.0
PHBV/CNF (7.5)-Ag 99.9
PHBV/CNFA-Ag 99.9
PHBV/CNFC-Ag 99.5
PHBV/CNFAC-Ag 99.9
PHBV/CNF(7.5)A-Ag 99.9
[1] ZHONG Yajie, GODWIN Patrick, JIN Yongcan, et al. Biodegradable polymers and green-based antimicrobial packaging materials: a mini-review[J]. Advanced Industrial and Engineering Polymer Research, 2020,3(1):27-35.
doi: 10.1016/j.aiepr.2019.11.002
[2] SIRACUSA Valentina, ROCCULI Pietro, ROMANI Santina, et al. Biodegradable polymers for food packaging: a review[J]. Trends in Food Science & Technology, 2008,19(12):634-643.
[3] MAO Zhiqiang, LI Sining, LENG Yuanpeng, et al. Controlled morphology and size of ZnO nanocrystals using the continuous hot compressed water technique[J]. The Journal of Supercritical Fluids, 2013,79:268-273.
[4] RAHAYU A, ZALEHA Z, YAHYA A R M, et al. Production of copolymer poly (3-hydroxybutyrate-co-4-hydroxybutyrate) through a one-step cultivation process[J]. World Journal of Microbiology and Biotechnology, 2008,24(11):2403-2409.
[5] LI Zhengjun, SHI Zhenyu, JIAN Jia, et al. Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli[J]. Metabolic Engineering, 2010,12(4):352-359.
doi: 10.1016/j.ymben.2010.03.003 pmid: 20304089
[6] 张瑜. 竹纤维/PHBV复合材料的力学性能研究[J]. 纺织学报, 2004,25(6):38-40.
ZHANG Yu. Research on mechanical properties of bamboo fiber / PHBV composites[J]. Journal of Textile Research, 2004,25(6):38-40.
[7] LI Fang, YU Houyong, WANG Yanyan, et al. Natural biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites with multifunctional cellulose nanocrystals/graphene oxide hybrids for high-performance food packaging[J]. Journal of Agricultural and Food Chemistry, 2019,67(39):10954-10967.
pmid: 31365242
[8] LU Fangfang, YU Houyong, YAN Chenfeng, et al. Polylactic acid nanocomposite films with spherical nanocelluloses as efficient nucleation agents: effects on crystallization, mechanical and thermal properties[J]. RSC Advances, 2016,6(51):46008-46018.
doi: 10.1039/C6RA02768G
[9] RIVERA-BRISO A L, SERRANO-AROCA Á. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate): enhancement strategies for advanced applications[J]. Polymers, 2018,10(7):732.
doi: 10.3390/polym10070732
[10] DIEZ-PASCUAL A M, DIEZ-VICENTE A L. ZnO-reinforced poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging[J]. ACS Applied Materials & Interfaces, 2014,6(12):9822-9834.
pmid: 24846876
[11] WANG Li, GUO Yong, CHEN Yuxia, et al. Enhanced mechanical and water absorption properties of rice husk-derived nano-SiO2 reinforced PHBV composites[J]. Polymers, 2018,10(9):1022.
doi: 10.3390/polym10091022
[12] 张效林, 李佳, 邓祥胜, 等. 废纸纤维/微晶纤维素增强PHBV复合材料性能研究[J]. 功能材料, 2018,49(8):8097-8101.
ZHANG Xiaolin, LI Jia, DENG Xiangsheng, et al. Study on properties of waste paper fiber/microcrystalline cellulose reinforced PHBV composites[J]. Journal of Functional Materials, 2018,49(8):8097-8101.
[13] TANG Feng, YU Houyong, ABDALKARIM Somia Yassin Hussain, et al. Green acid-free hydrolysis of wasted pomelo peel to produce carboxylated cellulose nanofibers with super absorption/flocculation ability for environmental remediation materials[J]. Chemical Engineering Journal, 2020,395:12500.
[14] GORRASI Giuliana, PANTANI Roberto, MURARIU Marius, et al. PLA/H alloysite nanocomposite films: water vapor barrier properties and specific key characteristics[J]. Macromolecular Materials and Engineering, 2014,299:104-115.
doi: 10.1002/mame.201200424
[15] PANTANI Roberto, GORRASI Giuliana, VIGLITOTTA Giovanni, et al. PLA-ZnO composite films: water vapor barrier properties and specific end-use characteristics[J]. European Polymer Journal, 2013,49:3471-3482.
doi: 10.1016/j.eurpolymj.2013.08.005
[16] YU Houyong, YANG Xingyuan, LU Fangfang, et al. Fabrication of multifunctional cellulose nanocrystals/poly (lactic acid) composites with silver nanoparticles by spraying method[J]. Carbohydrate Polymers, 2016,140:209-219.
pmid: 26876846
[17] YU Houyong, QIN Zengyi, SUN Bin, et al. One-pot green fabrication and antibacterial activity of thermally stable corn-like CNC/Ag composites[J]. Journal of Nanoparticle Research, 2014,16:1-12.
doi: 10.1007/s11051-014-2285-6
[18] LI Shuming, JIA Ning, ZHU Jiefang, et al. Rapid microwave-assisted preparation and characterization of cellulose-silver composites[J]. Carbohydrate Polymers, 2011,83:422-429.
doi: 10.1016/j.carbpol.2010.08.003
[19] HUANG Wei, WANG Yingjun, REN Li, et al. A novel PHBV/HA microsphere releasing system loaded with alendronate[J]. Materials Science and Engineering C, 2009,29:2221-2225.
doi: 10.1016/j.msec.2009.05.015
[20] VIDHATE S, INNOCENTINI-MEI L, D'SOUZA N A. Mechanical and electrical multifunctional poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-multiwall carbon nanotube composites[J]. Polymer Engineering & Science, 2012,52:1367-1374.
[21] GEORGE J, KUMAR R, SAJEEVKUMAR V A, et al. Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles[J]. Carbohydrate Polymers, 2014,105:285-292.
doi: 10.1016/j.carbpol.2014.01.057 pmid: 24708982
[22] FUJISAWA Shuji, IKEUCHI Tomoyasu, TAKEUCHI Miyuki, et al. Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies[J]. Biomacromolecules, 2012,13:2188-2194.
doi: 10.1021/bm300609c pmid: 22642863
[1] . Research progress in priparation of nano silver and its application in textiles [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 171-178.
[2] . Influence of nano silver loading on dyeing property of cotton fabrec [J]. Journal of Textile Research, 2015, 36(07): 61-65.
[3] . Preparation and antimicrobial property of silver-loaded color spun rayon fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(1): 91-0.
[4] . Antibacterial in -situ treatment of silk fabrics with nano silver [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(8): 100-0.
[5] BIAN Xue-Hai, ZHAO Ya-Ping, MENG Yun, CAI Zai-Sheng. Preparation and characterization of conductive fabric with organic-inorganic composite film [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(5): 25-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!