Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 89-94.doi: 10.13475/j.fzxb.20191204906

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Study on process performance of ramie fiber anaerobic biological degumming system

LIU Fang1, MA Yanxue2,3, CHEN Xiaoguang1,4(), LIU Shuhui3, ZHANG Yizhen1, REN Zhipeng1, LI Kangqi1, TONG Yixuan3, REN Luotong1, LI Yuling2,3   

  1. 1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    3. College of Textiles, Donghua University, Shanghai 201620, China
    4. State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
  • Received:2019-12-23 Revised:2020-06-15 Online:2020-11-15 Published:2020-11-26
  • Contact: CHEN Xiaoguang E-mail:cxg@dhu.edu.cn

Abstract:

In order to solve the problems of low efficiency, high cost and secondary pollution in traditional degumming of ramie fiber, a high efficiency ramie fiber anaerobic degumming system was developed using a self-developed high efficiency ramie fiber anaerobic degumming device as the carrier. Based on chemical composition analysis of the raw ramie, the characteristics of the start-up and stable operation stages of ramie fiber anaerobic biological degumming process were studied, and the physical characteristics of the degummed ramie fiber were analyzed. It was found that cellulose and gelatine account for about 70% and 30% respectively in the raw ramie, and that the hemicellulose and lignin should be removed firstly in the degumming process. The system can start up rapidly within 72 hours of hydraulic retention time, and when it runs efficiently and stably, the pH is about 7.0, and chemical oxygen demand and ammonia nitrogen concentration are both at low levels. The ramie fiber has the best physical characteristics when the optimal water bath ratio is 1∶8, under which the ramie fiber has good appearance and mechanical properties, and the residue of gelatine is minimal.

Key words: ramie, spiral symmetry stream anaerobic bioreactor, biological degumming, cellulose, pectin

CLC Number: 

  • TS123.2

Fig.1

Process flow of anaerobic biological degumming system for ramie fiber"

Tab.1

Detailed rules for evaluation and grading of appearance and morphology of ramie after degumming"

指标 评价 评分标准
色泽 洁白有光泽 8~10
较黄略有光泽 5~7
黄褐色 0~4
柔软度 手感柔软顺滑 8~10
较柔软 5~7
手感较硬 0~4
夹生、硬块硬条 均匀无夹生、没有硬块硬条 8~10
较少夹生、硬块硬条较少 5~7
较多夹生、硬块硬条较多 0~4
碎麻 手感强力好,无碎麻 8~10
较少碎麻 5~7
手感强力低、较多碎麻 0~4
斑疵 纤维质量均匀、无斑疵 8~10
有褐色病斑、疵点 5~7
较多的褐色病斑、疵点 0~4

Tab.2

Chemical composition analysis of raw ramie%"

纤维素 半纤维素 果胶 水溶物 灰分 木质素 脂蜡质
70.03 13.16 4.72 4.68 3.94 2.37 1.10

Fig.2

Variation curves of pH, COD and ammonia nitrogen concentration during the start-up of ramie fiber degumming system"

Fig.3

Variation curves of pH, COD and ammonia nitrogen concentration during operation of ramie fiber degumming system"

Tab.3

Evaluation results of fiber appearance and morphology after degumming of ramie by different water bath ratio"

浴比 评分 总分
色泽 柔软度 夹生、硬块硬条 斑疵 碎麻
1∶13 6.73±0.22 5.63±0.59 5.13±0.57 7.40±0.27 6.80±0.37 31.69±2.02
1∶10 6.40±0.29 4.93±0.35 4.53±0.25 6.48±0.31 5.68±0.34 28.02±1.54
1∶8 7.73±0.22 6.25±0.24 4.90±0.34 6.90±0.50 5.80±0.36 31.58±1.66
1∶6 4.30±0.24 3.50±0.73 4.75±0.76 6.23±0.48 6.88±0.46 25.66±2.67

Tab.4

Physical and mechanical properties of ramie after degumming by different water bath ratio"

浴比 线密度/
dtex
强度/
(cN·dtex-1)
质量
损失率/%
脱胶率/
%
1∶13 5.50 9.79 26.90 63.50
1∶10 6.00 7.18 25.30 62.36
1∶8 6.80 6.21 31.70 65.87
1∶6 7.60 5.87 29.88 60.39

Fig.4

Infrared spectrum analysis of ramie after degumming by different water bath ratio"

[1] 杨琦, 段盛文, 彭源德. 苎麻微生物脱胶技术的研究进展[J]. 中国麻业科学, 2018,40(1):36-42.
YANG Qi, DUAN Shengwen, PENG Yuande. Research development on microbial degumming of ramie[J]. Plant Fibers and Products, 2018,40(1):36-42.
[2] LIU Lijun, CHEN Hequan, DAI Xiaobing, et al. Effect of planting density and fertilizer application on fiber yield of ramie(boehmeria nivea)[J]. Journal of Integrative Agriculture, 2012,11(7):1199-1206.
[3] 吕江南, 龙超海, 赵举, 等. 横向喂入式苎麻剥麻机的设计与试验[J]. 农业工程学报, 2013,29(16):16-21.
LÜ Jiangnan, LONG Chaohai, ZHAO Ju, et al. Design and experiment of transverse-feeding ramie decortica-tor[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(16):16-21.
[4] 汪测生. 苎麻生物脱胶工艺技术的创新[J]. 四川纺织科技, 2001(1):4-6.
WANG Cesheng. Innovation in ramie bio-degumming technology[J]. Sichuan Textile Technology, 2001(1):4-6.
[5] 李强, 杨小明. 中国原始纺织技术起源新考[J]. 纺织科技进展, 2010(2):13-16.
LI Qiang, YANG Xiaoming. Study on primitive textile technologies in China[J]. Progress in Textile Science & Technology, 2010(2):13-16.
[6] LIU Guoliang, LI Zhengfan, DING Ruoyao, et al. The application of peroxide in the degumming process of ramie[J]. Advanced Materials Research, 2011, 307:1580-1584.
[7] BRUHLMANN Fredi, KIM Kwi Suk, ZIMMERMAN Wolfgang, et al. Pectinolytic enzymes from actinomycetes for the degumming of ramie bast fibers[J]. Applied and Environmental Microbiology, 1994,60(6):2107-2112.
doi: 10.1128/AEM.60.6.2107-2112.1994 pmid: 16349296
[8] 陈景浩, 卢必涛, 王天佑, 等. 苎麻微生物脱胶菌株的最佳脱胶条件[J]. 纺织学报, 2014,35(12):91-95.
CHEN Jinghao, LU Bitao, WANG Tianyou, et al. Optimal degumming conditions of strains for microbial degumming of ramie[J]. Journal of Textile Research, 2014,35(12):91-95.
[9] 陈小光, 徐晓雪, 薛罡, 等. 一种螺旋对称流厌氧反应器: 201210054218.6[P]. 2012-07-18.
CHEN Xiaoguang, XU Xiaoxue, XUE Gang, et al. A spiral symmetry stream anaerobic bioreactor: 201210054218.6[P]. 2012-07-18.
[10] 陈小光, 刘芳, 李毓陵, 等. 一种高效苎麻生物脱胶反应系统: 201910079576.4[P]. 2019-04-02.
CHEN Xiaoguang, LIU Fang, LI Yuling, et al. A highly efficient biological degumming reaction system for ramie: 201910079576.4[P]. 2019-04-02.
[11] CHEN Xiaoguang, WANG Yu, WANG Zhiyao, et al. Efficient treatment of traditional Chinese pharmaceutical wastewater using a pilot-scale spiral symmetry stream anaerobic bioreactor compared with internal circulation reactor[J]. Chemosphere, 2019,228:437-443.
doi: 10.1016/j.chemosphere.2019.04.173 pmid: 31051345
[12] 刘书惠, 李毓陵, 崔运花, 等. 苎麻鲜麻沸水煮练处理对厌氧微生物脱胶的影响[J]. 中国麻业科学, 2020,42(1):31-37.
LIU Shuhui, LI Yuling, CUI Yunhua, et al. Anaerobic microbial degumming effect of boiling water on cooked fresh ramie[J]. Plant Fibers and Products, 2020,42(1):31-37.
[13] 李岗, 陈小光, 戴若彬. 螺旋对称流厌氧膜生物反应器的运行及优化[J]. 环境科学学报, 2017,37(6):2130-2136.
LI Gang, CHEN Xiaoguang, DAI Ruobing. Operation and optimization of spiral symmetry stream-anaerobic membrane bioreactor[J]. Acta Scientiae Circumstantiae, 2017,37(6):2130-2136.
[14] 冯湘沅, 刘正初, 段盛文, 等. 高效菌株CXJZU-120与T66的苎麻脱胶性能[J]. 纺织学报, 2011,32(12):76-80.
FENG Xiangyuan, LIU Zhengchu, DUAN Shengwen, et al. Degumming properties of high-efficiency strains CXJZU-120 and T66 for ramie[J]. Journal of Textile Research, 2011,32(12):76-80.
[15] 钟安华, 谭远友, 王成国, 等. 苎麻生长期对纤维结构及品质的影响[J]. 纺织学报, 2005,26(5):20-22,25.
ZHONG Anhua, TAN Yuanyou, WANG Chengguo, et al. Effect of ramie's growth period on its structure and character[J]. Journal of Textile Research, 2005,26(5):20-22,25.
[16] JIANG Wei, SONG Yan, LIU Shaoyang, et al. A green degumming process of ramie[J]. Industrial Crops and Products, 2018,120:131-134.
[17] YI Cui, JIA Manlan, LIU Liu, et al. Research on the character and degumming process of different parts of ramie fiber[J]. Textile Research Journal, 2018,88(17):2013-2023.
[18] MENG Chaoran, LI Zhaoling, WANG Chaoyun, et al. Sustained-release alkali source used in the oxidation degumming of ramie[J]. Textile Research Journal, 2017,87(10):1155-1164.
[19] 李梦珍, 张斌, 郁崇文. 采用N-甲基吡咯烷酮的苎麻纤维柔软处理[J]. 纺织学报, 2019,40(4):72-76.
LI Mengzhen, ZHANG Bin, YU Chongwen. Softness treatment of ramie fibers by N-methyl-2-pyrrolidone[J]. Journal of Textile Research, 2019,40(4):72-76.
[1] LI Junyu, JIANG Peiqing, ZHANG Wenqi, LI Wenbin. Effect of atomic layer deposition technology on functionalization of cellulose membrane [J]. Journal of Textile Research, 2020, 41(12): 26-30.
[2] MA Yue, GUO Jing, YIN Juhui, ZHAO Miao, GONG Yumei. Preparation and characterization of cellulose/dialdehyde cellulose/Antarctic krill protein antibacterial fibers [J]. Journal of Textile Research, 2020, 41(11): 34-40.
[3] QU Yongshuai, SHI Zhaohe, ZHANG Ruiyun, ZHAO Shuyuan, LIU Liu. Effect of anthraquinone additive on properties of glycol solvent degummed ramie fibers [J]. Journal of Textile Research, 2020, 41(11): 81-88.
[4] LU Linna, LI Yonggui, LU Qilin. One-pot synthesis and characterization of aminated cellulose nanocrystals [J]. Journal of Textile Research, 2020, 41(10): 14-19.
[5] TANG Feng, YU Houyong, ZHOU Ying, LI Yingzhan, YAO Juming, WANG Chuang, JIN Wanhui. Preparation and property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite films [J]. Journal of Textile Research, 2020, 41(09): 8-15.
[6] YUAN Wei, YAO Yongbo, ZHANG Yumei, WANG Huaping. Alkaline enzyme treatment process for preparation of Lyocell cellulose pulp [J]. Journal of Textile Research, 2020, 41(07): 1-8.
[7] LIU Sijia, YU Qian, WANG Rui, KONG Xianming. Preparation of flexible Au nanoparticle decorated regenerated regenerated cellulose fiber compound and quickly detection of Nile Blue [J]. Journal of Textile Research, 2020, 41(07): 23-28.
[8] LIU Yanchun, BAI Gang. Application of berberine in polyacrylonitrile / cellulose acetate composite fiber dyeing [J]. Journal of Textile Research, 2020, 41(05): 94-98.
[9] WANG Shixian, JIANG Shuai, LI Mengmeng, LIU Lifang, ZHANG Li. Preparation and characterization of nanocellulose aerogel modified by silane coupling agent [J]. Journal of Textile Research, 2020, 41(03): 33-38.
[10] DANG Danyang, CUI Lingyan, WANG Liang, LIU Yong. Preparation and properties of cellulose nanofiber / montmorillonite composite aerogels [J]. Journal of Textile Research, 2020, 41(02): 1-6.
[11] FU Lisong, ZHANG Shujie, WANG Rui, YANG Zhaowei, JING Mengke. Tensile strength of polyester / ramie nonwoven composite applied on pipeline rehabilitation [J]. Journal of Textile Research, 2020, 41(02): 52-57.
[12] CHEN Dongzhi, YANG Xiaogang, CHEN Yanxia, LIU Lin, CHEN Bin, . Study on cellulose-based flocculant from flax yarn waste and its flocculation performance in treating industrial wastewater [J]. Journal of Textile Research, 2020, 41(01): 88-95.
[13] LI Zhenqun, XU Duo, WEI Chunyan, QIAN Yongfang, LÜ Lihua. Preparation of cotton stalk bast cellulose / graphene oxide fiber and its mechanical properties and adsorption capacity [J]. Journal of Textile Research, 2020, 41(01): 15-20.
[14] WU Jiajun, QIN Xiaohong. Preparation and characterization of cellulose acetate sub-micro fiber from burley tobacco stalk pulp [J]. Journal of Textile Research, 2019, 40(12): 1-8.
[15] XU Chunxia, JIANG Shuai, HAN Fuyi, XU Fang, LIU Lifang. Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue [J]. Journal of Textile Research, 2019, 40(10): 20-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!