Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 168-173.doi: 10.13475/j.fzxb.20191206306

• Comprehensive Review • Previous Articles     Next Articles

Research progress of noise reduction by nanofibers

LI Haoyi1,2, XU Hao1, CHEN Mingjun1, YANG Tao3, CHEN Xiaoqing1, YAN Hua1,2, YANG Weimin1,2()   

  1. 1. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    2. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
    3. China Chemical Fibers Association, Beijing 100022, China
  • Received:2019-12-30 Revised:2020-08-06 Online:2020-11-15 Published:2020-11-26
  • Contact: YANG Weimin E-mail:yangwm@mail.buct.edu.cn

Abstract:

In order to broaden the application of nanofibers in acoustics and promote the development of sound absorption of high-performance nanofibers, the current research on sound absorption and noise reduction of nanofibers at domestic and abroad is reviewed. First, the sound absorption principle and advantages of nanofibers are analyzed. The high specific surface area and porosity of nanofibers promote the absorption of sound waves in the low and middle frequency range. Secondly, the factors that affect the sound absorption properties of nanofibers are summarized. Then introduced the preparation technology of nanofibers. The effects of nanofibers on the sound absorption properties of natural fibers, synthetic fibers and foams are mainly described. It is believed that conventional sound absorption materials can significantly improve their sound absorption performance in low and middle frequency range by combining with nanofibers. Finally, the prospects for nanofiber sound-absorbing urgently to be solved and how to prepare green and high-performance nanofiber sound-absorbing materials were made.

Key words: nanofiber, sound absorbing material, noise reduction, electrospinning, composite material

CLC Number: 

  • TS141

Fig.1

Schematic of porous material sound absorption"

Fig.2

Schematic resonance of nanofiber membrane"

Tab.1

Sound absorption curves characteristic of common nanofiber"

材料 吸声曲线特点 参考文献
PVC 共振频率低,中低频吸声性能好 [6,8]
PVP 相比于PVC,高频段吸声性能更好 [6,8]
PVA 材料中低频段吸声性能,高频吸声性能变差 [9-10]
PAN 共振频率高,
对材料在高频段的吸声性能改善明显
[11-12]
[13-14]
PU 相比于PAN,共振频率低,中低频吸声性能好 [12-13,15]
PVDF 相比于PU,共振频率低,中低频吸声性能好 [16-17]
PA 高频提升效果明显,中低频几乎无提升作用 [18]

Fig.3

3-D nanofiber manufacturing process"

Fig.4

Resilience performance of cross-linked PS nanofiber"

Tab.2

Sound absorption performance of nanofiber composite sound-absorbing materials in different frequency ranges"

材料 吸声性能 吸声系数峰值
对应频率/Hz
吸声系数
峰值
250~500 Hz 500~1 000 Hz 1 000~2 000 Hz 2 000~4 000 Hz
天然纤维 羊毛[18] 一般 4 000 0.46
PA纳米纤维网/羊毛[18] 一般 4 000 0.85
黄麻[14] 4 000 0.65
PAN纳米纤维/黄麻[14] 一般 一般 4 000 0.85
椰壳[9] 一般 1 200 0.40
PVA纳米纤维/椰壳[9] 一般 一般 1 000 0.37
改性PVA纳米纤维/椰壳[9] 一般 800 0.55
合成纤维 PET非织造布[13] 一般 4 000 0.76
PU纳米纤维/PET非织造布[13] 一般 2 200 0.74
PAN纳米纤维/PET非织造布[13] 一般 3 000 0.80
聚酯[22] 4 000 0.18
PAN纳米纤维/聚酯[22] 一般 2 000 0.70
非织造布[15] 3 200 0.55
非织造布/非织造布[15] 一般 2 600 0.80
PU纳米纤维/非织造布[15] 一般 2 600 0.80
非织造布/PU纳米纤维/非织造布[15] 一般 2 500 0.98
泡沫 BASF泡沫[11] 一般 一般 4 000 0.60
PAN纳米纤维/BASF泡沫[11] 一般 3500 0.96
聚氨酯泡沫[12] 1 500 0.15
PAN纳米纤维/聚氨酯泡沫[12] 一般 3 200 0.77
PU纳米纤维/聚氨酯泡沫[12] 一般 2 000 0.70
泡沫板[31] 1 250 0.10
(PU/PVDF纳米纤维)/泡沫板[31] 一般 1 400 0.68
泡沫[16] 一般 3 200 0.91
PVDF/泡沫[16] 一般 1 000 0.82
PVDF(添加CNTs)/泡沫[16] 一般 1 000 0.90
[1] 丁雷. 声频工程中共振吸声材料特性及应用[J]. 电声技术, 2019(5):12-18.
DING Lei. Characteristics and application of resonant sound absorbing materials in audio engineering[J]. Audio Engineering, 2019(5):12-18.
[2] CHANG G, ZHU X, LI A, et al. Formation and self-assembly of 3D nanofibrous networks based on oppositely charged jets[J]. Materials & Design, 2016,97:126-130.
[3] RAHIMABADY M, STATHARAS E C, YAO K, et al. Hybrid local piezoelectric and conductive functions for high performance airborne sound absorption[J]. Applied Physics Letters, 2017,111(24):241601.
doi: 10.1063/1.5010743
[4] KALINOVÁ K. Nanofibrous resonant membrane for acoustic applications[J]. Journal of Nanomaterials, 2011.DOI: org/10.1155/2011/265720.
doi: 10.1155/2011/469031 pmid: 22448162
[5] KUCUKALI O M M K, KALINOVA K, NERGIS B, et al. Comparison of resonance frequency of a nanofibrous membrane and a homogeneous membrane structure[J]. Textile Research Journal, 2013,83(20):2204-2210.
doi: 10.1177/0040517513490064
[6] ASMATULU R, KHAN W, YILDIRIM M B. Acoustical properties of electrospun nanofibers for aircraft interior noise reduction [C]//Asme International Mechanical Engineering Congress & Exposition. Florida: The American Society of Mechanical Engineers, 2009: 223-227.
[7] 彭敏, 赵晓明. 纤维类吸声材料的研究进展[J]. 材料导报, 2019,33(21):3669-3677.
PENG Min, ZHAO Xiaoming. Advances in the fiber-based sound-absorbing materials[J]. Materials Reports, 2019,33(21):3669-3677.
[8] KHAN W S, ASMATULU R, YILDIRIM M B. Acoustical properties of electrospun fibers for aircraft interior noise reduction[J]. Journal of Aerospace Engineering, 2012,25(3):376-382.
doi: 10.1061/(ASCE)AS.1943-5525.0000118
[9] SELVARAJ S, JEEVAN V, JONNALAGADDA R R, et al. Conversion of tannery solid waste to sound absorbing nanofibrous materials: a road to sustainability[J]. Journal of Cleaner Production, 2019,213:375-383.
doi: 10.1016/j.jclepro.2018.12.144
[10] KUCUKALI OZTURK M, NERGIS F B, CANDAN C. Design of layered structure with nanofibrous resonant membrane for acoustic applications[J]. Journal of Industrial Textiles, 2018,47(7):1739-1756.
doi: 10.1177/1528083717708483
[11] XIANG H, TAN S, YU X, et al. Sound absorption behavior of electrospun polyacrylonitrile nanofibrous membranes[J]. Chinese Journal of Polymer Science, 2011,29(6):650-657.
doi: 10.1007/s10118-011-1079-x
[12] BAHRAMBEYGI H, SABETZADEH N, RABBI A, et al. Nanofibers (PU and PAN) and nanoparticles (nanoclay and MWNTs) simultaneous effects on polyurethane foam sound absorption[J]. Journal of Polymer Research, 2013,20(2):72.
doi: 10.1007/s10965-012-0072-6
[13] RABBI A, BAHRAMBEYGI H, NASOURI K, et al. Manufacturing of PAN or PU nanofiber layers/PET nonwoven composite as highly effective sound absorbers[J]. Advances in Polymer Technology, 2014,33(4):21425.
[14] KUCUKALI O M, NERGIS F B, CANDAN C. Design of electrospun polyacrylonitrile nanofiber-coated nonwoven structure for sound absorption[J]. Polymers for Advanced Technologies, 2018,29(4):1255-1260.
doi: 10.1002/pat.v29.4
[15] ZKAL A, CENGIZ Ç F, AKDUMAN Ç. Development of a new nanofibrous composite material from recycled nonwovens to improve sound absorption ability[J]. Journal of The Textile Institute Proceedings and Abstracts, 2020,111(2):189-201.
[16] WU C M, CHOU M H. Polymorphism, piezoelectricity and sound absorption of electrospun PVDF membranes with and without carbon nanotubes[J]. Composites Science and Technology, 2016,127:127-133
doi: 10.1016/j.compscitech.2016.03.001
[17] JI G, CUI J, FANG Y, et al. Nano-fibrous composite sound absorbers inspired by owl feather surfaces[J]. Applied Acoustics, 2019,156:151-157.
doi: 10.1016/j.apacoust.2019.06.021
[18] NA Y, AGNHAGE T, CHO G. Sound absorption of multiple layers of nanofiber webs and the comparison of measuring methods for sound absorption co-efficients[J]. Fibers and Polymers, 2012,13(10):1348-1352.
doi: 10.1007/s12221-012-1348-5
[19] CHEN F Q, WU Y H, DING Z Y, et al. A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing[J]. Nano Energy, 2019,56:241-251.
doi: 10.1016/j.nanoen.2018.11.041
[20] 浦文婧, 李效东, 王清华. 高分子吸声材料吸声性能与粘弹性之间的关系[J]. 高分子材料科学与工程, 2011,27(12):86-89.
PU Wenjing, LI Xiaodong, WANG Qinghua. Relationship between acoustical absorptivity and viscoelasticity of acoustical absorptive polymer[J]. Polymer Materials Science & Engineering, 2011,27(12):86-89.
[21] ZKAL A, CENGIZ ÇALLIO LU F. Effect of nanofiber spinning duration on the sound absorption capacity of nonwovens produced from recycled polyethylene terephthalate fibers[J]. Applied Acoustics, 2020,169:107468.
doi: 10.1016/j.apacoust.2020.107468
[22] KUCUKALI O M, OZDEN Y E, NERGIS B, et al. Nanofiber-enhanced lightweight composite textiles for acoustic applications[J]. Journal of Industrial Textiles, 2017,46(7):1498-1510.
doi: 10.1177/1528083715622427
[23] AVOSSA J, BRANDA F, MARULO F, et al. Light electrospun polyvinylpyrrolidone blanket for low frequencies sound absorption[J]. Chinese Journal of Polymer Science, 2018,36(12):1368-1374.
doi: 10.1007/s10118-018-2154-3
[24] CAO L, SI Y, YIN X, et al. Ultralight and resilient electrospun fiber sponge with a lamellar corrugated microstructure for effective low-frequency sound absorption[J]. ACS Applied Materials & Interfaces, 2019,11(38):35333-35342.
doi: 10.1021/acsami.9b12444 pmid: 31487451
[25] IANNACE G. Acoustic properties of nanofibers[J]. Noise & Vibration Worldwide, 2014,45(10):29-33.
[26] LIU H, WANG D, ZHAO N, et al. Application of electrospinning fibres on sound absorption in low and medium frequency range[J]. Materials Research Innovations, 2014,18(sup4):888-891.
[27] 杨卫民, 李好义, 吴卫逢, 等. 熔体静电纺丝技术研究进展[J]. 北京化工大学学报 (自然科学版), 2014,41(4):1-13.
YANG Weimin, LI Haoyi, WU Weifeng, et al. Recent advances in melt electrospinning[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2014,41(4):1-13.
[28] 陈明军, 张有忱, 李好义, 等. 熔体微分静电纺丝纳米纤维高效绿色制备技术[J]. 北京化工大学学报 (自然科学版), 2018,45(5):119-128.
CHEN Mingjun, ZHANG Youchen, LI Haoyi, et al. Nanofiber preparation technology by melt differential electrospinning with high efficiency in the absence of a solvent[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2018,45(5):119-128.
[29] 栾巧丽, 邱华, 成钢, 等. 羊毛及其混合纤维非织造材料的吸声性能[J]. 纺织学报, 2017,38(3):67-71.
LUAN Qiaoli, QIU Hua, CHENG Gang, et al. Sound absorption properties of nonwoven material based on wool and its hybrid fibers[J]. Journal of Textile Research, 2017,38(3):67-71.
[30] 杜兆芳, 胡凤霞, 赵淼淼, 等. 汽车内饰材料的吸声性能[J]. 纺织学报, 2011,32(6):45-49.
DU Zhaofang, HU Fengxia, ZHAO Miaomiao, et al. Sound absorption properties of automotive ornamental materials[J]. Journal of Textile Research, 2011,32(6):45-49.
[31] 邹亚玲, 石琳, 周颖, 等. 纳米纤维毡复合材料制备及其吸声性能研究[J]. 产业用纺织品, 2014 (9):22-26.
ZOU Yaling, SHI Lin, ZHOU Ying, et al. Preparation of sound absorption on nano-fiber composite mats and its sound absorption property[J]. Technical Textiles, 2014 (9):22-26.
[32] LOU C W, LIN J H, SU K H. Recycling polyester and polypropylene nonwoven selvages to produce functional sound absorption composites[J]. Textile Research Journal, 2005,75(5):390-394.
doi: 10.1177/0040517505054178
[33] ARENAS J P, CROCKER M J. Recent trends in porous sound-absorbing materials[J]. Sound & Vibration, 2010,44(7):12-18.
[1] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[2] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[3] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[4] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[5] LÜ Qingtao, ZHAO Shibo, DU Peijian, CHEN Li. Research status of fatigue properties characterization and analysis methods of resin matrix composites [J]. Journal of Textile Research, 2021, 42(01): 181-189.
[6] ZHOU Qihong, SUN Baotong, CEN Junhao, ZHAN Qichen. Measurement method of winding density of cheese package based on laser scanning and modeling [J]. Journal of Textile Research, 2021, 42(01): 96-102.
[7] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[8] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan / polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[9] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride / FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[10] SUN Qian, KAN Yan, LI Xiaoqiang, GAO Dekang. Preparation and performance of colorimetric humidity sensor using polyacrylonitrile/CoCl2 nanofibers [J]. Journal of Textile Research, 2020, 41(11): 27-33.
[11] WANG Liyuan, KANG Weimin, ZHUANG Xupin, JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[12] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[13] SHEN Yue, JIANG Gaoming, LIU Qixia. Analysis on acoustic absorption performance of activated carbon fiber felts with gradient structure [J]. Journal of Textile Research, 2020, 41(10): 29-33.
[14] DUAN Fangyan, WANG Wenyu, JIN Xin, NIU Jiarong, LIN Tong, ZHU Zhengtao. Research progress in formation of starch fibers and their drug-loaded controlled-release [J]. Journal of Textile Research, 2020, 41(10): 170-177.
[15] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!