Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (01): 118-124.doi: 10.13475/j.fzxb.20200100507

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Influence of fabric tightness and anti-crease finishing on wrinkle recovery of pure cotton woven fabrics

HOU Wenshuang1, MIN Jie2, JI Feng1(), ZHANG Jianxiang3, SU Meng2, HE Ruixian1   

  1. 1. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
    3. Lutai Textile Co., Ltd., Zibo, Shandong 255100, China
  • Received:2020-01-06 Revised:2020-10-14 Online:2021-01-15 Published:2021-01-21
  • Contact: JI Feng E-mail:jifeng@dhu.edu.cn

Abstract:

In order to improve the anti-creasy property of cotton fabrics, the influence of the independent and cross-coupling effect of fabric tightness and anti-crease finishing parameters on wrinkle recovery performance of pure cotton woven fabrics were explored. Two groups of pure cotton woven fabrics, twill and plain woven fabrics, were selected as specimens for this research. For each type of fabric specimen before and after the crease-resistant finishing, the instant/slow recovery angle, surface morphology and surface chemical structure were tested. Based on the experimental data, the effects of fabric tightness and resin concentration on wrinkle recovery of cotton fabric were studied. Double-factor analysis of variance was adopted to evaluate the significance of the cross-coupling effect of fabric tightness and resin concentration on wrinkle recovery of cotton fabrics, and the synergistic effect of fabric tightness and resin concentration on wrinkle resistance of cotton fabrics was analyzed. The results show that fabric stiffness and resin concentration demonstrate significant and positive effect on wrinkle recovery of the fabric respectively. When the resin concentration rises, the growth rate of the wrinkle recovery angle of cotton woven fabric with lower fabric tightness is generally larger than that with higher fabric tightness. In addition, when treated by resin with concentration higher than 80 g/L, the winkle recovery angle of lower-tightness fabric is mostly larger than that of higher tightness with same structure.

Key words: cotton fabric, low-formaldehyde 2D resin, fabric tightness, recovery angle, anti-crease finishing

CLC Number: 

  • TS111.9

Tab.1

Fabric structural parameters"

试样
编号
织物
组织
纱线线密度/
tex
织物经纬密/
(根·(10 cm)-1)
经向紧度/
%
纬向紧度/
%
总紧度/
%
面密度/
(g·m-2)
经纱 纬纱 经密 纬密
A1 三上一下斜纹 83.3 83.3 244.0 118.0 82.43 39.89 89.44 302
A2 三上一下斜纹 58.3 83.3 307.0 196.5 86.76 66.48 95.56 365
A3 三上一下斜纹 36.4 58.3 425.0 220.5 94.92 62.29 98.08 284
A4 三上一下斜纹 29.2 36.4 503.5 236.0 100.76 52.73 100.36 280
B1 平纹 7.3 7.3 524.0 394.0 52.31 39.33 71.06 74
B2 平纹 14.6 14.6 472.0 236.0 66.74 33.37 77.84 101
B3 平纹 9.7 9.7 551.0 551.0 63.58 63.58 86.73 107
B4 平纹 36.4 58.3 393.5 157.5 87.94 40.62 92.84 216

Tab.2

Test data of fabric tightness and wrinkle recovery angle"

试样
编号
总紧度/
%
折皱回复角/(°)
平均值 标准差
A1 89.44 127.4 1.66
A2 95.56 129.2 2.10
A3 98.08 128.3 5.72
A4 100.36 127.1 2.44
B1 71.06 109.0 4.05
B2 77.84 123.0 4.40
B3 86.73 125.6 4.24
B4 92.84 127.1 3.85

Fig.1

Relationship between fabric tightness and instant recovery angle/slow recovery angle. (a) Twill fabrics; (b) Plain woven fabrics"

Fig.2

SEM images of fabric sample A4 before and after anti-crease finishing. (a) Untreated sample(×5 000);(b) 40 g/L(×10 000); (c) 80 g/L(×10 000);(d) 120 g/L(×10 000)"

Fig.3

Infrared spectra of sample A4 before and after finishing"

Tab.3

Recovery angles of fabric samples finished by resin of different mass concentrations"

试样
编号
折皱回复角/(°)
原样 40 g/L 60 g/L 80 g/L 100 g/L 120 g/L
A1 127.4 138.3 142.8 161.1 168.4 173.2
A2 129.2 146.5 151.1 164.7 169.0 172.2
A3 128.2 144.7 150.9 156.7 160.0 164.0
A4 127.1 142.2 148.9 150.1 153.4 160.0
B1 109.0 122.5 150.5 204.3 249.2 255.0
B2 123.0 126.2 137.7 163.2 201.1 217.9
B3 125.6 128.0 140.8 163.1 192.4 224.4
B4 127.1 134.9 144.3 170.7 194.4 212.4

Tab.4

Mean value of recovery angle of twill fabrics(A1~A4)"

试样
编号
紧度/% 回复角/(°)
原样 40 g/L 60 g/L 80 g/L 100 g/L 120 g/LL
A1 89.44 127.4 138.3 142.8 161.1 168.4 173.2
A2 95.56 129.2 146.5 151.1 164.7 169.0 172.2
A3 98.08 128.2 144.7 150.9 156.7 160.0 164.0
A4 100.36 127.1 142.2 148.9 150.1 153.4 160.0

Tab.5

Results of two-factor analysis of variance of twill fabrics"

方差来源 平方和 自由度 F 显著性
织物紧度 883.2 3 10.04 **
树脂质量浓度 16 915.2 5 115.35 **
协同效应 1 089.0 15 2.48 **
随机误差 2 111.7 72
总计 20 999.1 95

Tab.6

Mean value of recovery angle of plain woven fabrics(B1~B4)"

试样
编号
紧度/
%
回复角/(°)
原样 40 g/L 60 g/L 80 g/L 100 g/L 120 g/L
B1 71.06 109.03 122.53 150.53 204.32 249.18 255.00
B2 77.84 113.03 126.18 137.73 163.18 201.10 217.90
B3 86.73 125.60 128.00 140.80 163.08 192.40 224.40
B4 92.84 127.10 134.93 144.28 170.73 194.35 212.38

Tab.7

Results of two-factor analysis of variance of plain woven fabrics"

方差来源 平方和 自由度 F 显著性
织物紧度 7 191.18 3 106.756 **
树脂质量浓度 158 846.857 5 1 414.892 **
协同效应 12 122.26 15 35.992 **
随机误差 1 616.656 72
总计 179 776.953 95

Fig.4

Relationship between fabric tightness and instant recovery angle/slow recovery angle treated by different resin concentrations. (a) Twill fabrics treated by resin of 80 g/L mass concentration; (b) Twill fabrics treated by resin of 120 g/L;(c) Plain woven fabrics treated by resin of 80 g/L; (d) Plain woven fabrics treated by resin of 120 g/L"

[1] 韩茹. 影响棉织物折皱回复性因素的探讨[J]. 轻工科技, 2015,31(10):92-93.
HAN Ru. Discussion on factors influencing crease recovery of cotton fabrics[J]. Light Industry Science and Technology, 2015,31(10):92-93.
[2] 柴瑞帅. 基于线性回归方程的棉织物折皱回复角与组织结构参数的关系[J]. 印染助剂, 2018,35(6):38-40.
CHAI Ruishuai. Relationship between crease recovery angle of cotton fabric and structural parameters based on linear regression equation[J]. Textile Auxiliaries, 2018,35(6):38-40.
[3] 杨书会, 王瑞. 纯棉织物折皱回复角与其组织结构参数的关系[J]. 纺织学报, 2017,38(4):46-49.
YANG Shuhui, WANG Rui. Relationship between pure cotton fabrics wrinkle recovery angle and its organizational structure parameters[J]. Journal of Textile Research, 2017,38(4):46-49.
[4] 孙晶, 徐磊, 王瑞. 基于结构参数的织物抗皱性研究进展[J]. 西部皮革, 2017,39(18):143.
SUN Jing, XU Lei, WANG Rui. Research progress of fabric wrinkle resistance based on structural para-meters[J]. West Leather, 2017,39(18):143.
[5] 石浩轩, 骆鑫荣. 色织衬衣面料折皱回复性能研究[J].中国纤检, 2017(2):134-138.
SHI Haoxuan, LUO Xinrong. Research on crease recovery performance of yarn-dyed fabric[J]. China Fiber Inspection, 2017 (2):134-138.
[6] 赵文斌. 超低甲醛树脂在成衣免烫整理中的应用[J].印染, 2004(18):33-34.
ZHAO Wenbin. Application of ultra-low formaldehyde resin in the finishing of ready-to-wear[J]. China Dyeing & Finishing, 2004(18):33-34.
[7] 陈松, 刘庆, 宋绍玲. 无醛免烫整理剂对棉织物整理研究[J].印染, 2000(7):5-8.
CHEN Song, LIU Qing, SONG Shaoling. Research on cotton fabric finishing with aldeal-free free press finishing agent[J]. China Dyeing & Finishing, 2000(7):5-8.
[8] 陈松, 罗艳辉, 蒲宗耀, 等. 棉织物超低甲醛免烫整理[J]. 印染, 2016,42(17):31-34.
CHEN Song, LUO Yanhui, PU Zongyao, et al. Ultra-low formaldehyde no-press finishing of cotton fabric[J]. China Dyeing & Finishing, 2016,42(17):31-34.
[9] 肖慧芳, 阎克路, 纪柏林. 糖类添加剂在1,2,3,4-丁烷四羧酸棉织物防皱整理中的应用[J]. 纺织学报, 2018,39(7):89-94.
XIAO Huifang, YAN Kelu, JI Bolin. Application of carbohydrate additives in 1, 2, 3, 4-butanetetracarboxylic acid anti-wrinkle finishing of cotton fabrics[J]. Journal of Textile Research, 2018,39(7):89-94.
[10] 黄张秘, 周翔, 邢志奇, 等. 棉织物的聚羧酸无甲醛免烫整理[J]. 纺织学报, 2017,38(1):94-99.
HUANG Zhangmi, ZHOU Xiang, XING Zhiqi, et al. Formaldehyde-free durable press finishing of cotton fabrics with polycarboxylic acid[J]. Journal of Textile Research, 2017,38(1):94-99.
[11] 颜东, 邓继勇, 汪南方, 等. 有机硅改性聚氨酯/丙烯酸酯共聚乳液对棉织物的抗皱整理[J]. 纺织学报, 2018,39(1):89-93,110.
YAN Dong, DENG Jiyong, WANG Nanfang, et al. Anti-wrinkle finishing of organosilicone modified polyurethane/acrylate copolymer emulsion for cotton fabrics[J]. Journal of Textile Research, 2018,39(1):89-93,110.
[12] 武守营, 胡啸林, 明光, 等. 甲醇醚化2D树脂的合成及应用[J]. 印染, 2017,43(20):11-15.
WU Shouying, HU Xiaolin, MING Guang, et al. Synjournal and application of methanol etherified 2D resin[J]. China Dyeing & Finishing, 2017,43(20):11-15.
[13] 危想平, 陈文珍, 苏开第. 低温潮交联抗皱免烫整理[J].印染, 2004(4):31-32.
WEI Xiangping, CHEN Wenzhen, SU Kaidi. Low temperature tide cross-linking anti-wrinkle and non-ironing finishing[J]. China Dyeing & Finishing, 2004(4):31-32.
[14] WELCH C M, PETERS J G. DP finishes using citric and tartaric acid with methyl hydrogen silicone[J]. Text Chem Color Am Dyest Rep, 1999,1(3):55-60.
[15] 蔡陛霞, 荆妙蕾. 织物结构与设计 [M]. 4版.北京: 中国纺织出版社, 2008: 177-191.
CAI Bixia, JING Miaolei. Fabic construction and design[M]. 4th ed. Beijing: China Textile & Apparel Press, 2008: 177-191.
[1] ZENG Fanxin, QIN Zongyi, SHEN Yueying, CHEN Yuanyu, HU Shuo. Preparation and flame retardant properties of self-extinguishing cotton fabrics by spray-assisted layer-by-layer self-assembly technology [J]. Journal of Textile Research, 2021, 42(01): 103-111.
[2] LI Xintong, GAO Zhe, GU Hongyang, CONG Honglian. Study on stiffness style of knitted suit fabrics [J]. Journal of Textile Research, 2020, 41(11): 53-58.
[3] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
[4] WANG Bo, FAN Lihua, YUAN Yun, YIN Yunjie, WANG Chaoxia. Preparation and electric storage performance of stretchable polypyrrole / cotton knitted fabric [J]. Journal of Textile Research, 2020, 41(10): 101-106.
[5] HU Xiaorui, SUN Fengxin, XIAO Caiqin, GAO Weidong. Characterization of wrinkle recovery of fabrics based on in-situ mechanical testing [J]. Journal of Textile Research, 2020, 41(10): 41-45.
[6] LIU Guojin, SHI Feng, CHEN Xinxiang, ZHANG Guoqing, ZHOU Lan. Preparation of polyurethane / phase change wax functional finishing agents for heat storage and temperature regulation and their applications on cotton fabrics [J]. Journal of Textile Research, 2020, 41(07): 129-134.
[7] CHENG Shijie, WANG Chenyang, ZHANG Hongwei, ZUO Danying. Effect of boron nitrogen doped carbon dots on ultraviolet-protection of cotton fabrics [J]. Journal of Textile Research, 2020, 41(06): 93-98.
[8] ZHOU Qingqing, CHEN Jiayi, QI Zhenming, CHEN Weijian, SHAO Jianzhong. Preparation and characterization of flame retardant and antibacterial cotton fabric [J]. Journal of Textile Research, 2020, 41(05): 112-120.
[9] SU Xuzhong, WEI Yanhong, LIU Xinjin, XIE Chunping. Effect of spinning method on wrinkle-resistance and tensile elasticity of fabric [J]. Journal of Textile Research, 2020, 41(04): 33-38.
[10] TAN Lin, SHI Yidong, ZHOU Wenya. Study on enhancement of hydrophobicity treatment of cotton fabrics using silica sol [J]. Journal of Textile Research, 2020, 41(04): 106-111.
[11] WEI Tengxiang, LI Min, PENG Hongyun, FU Shaohai. Relationship between open-width mercerization condition and loop structure of weft plain-knitted cotton fabrics [J]. Journal of Textile Research, 2020, 41(04): 98-105.
[12] ZHAO Bing, HUANG Xiaocui, QI Ning, ZHONG Zhou, CHE Mingguo, GE Liangliang. Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond [J]. Journal of Textile Research, 2020, 41(03): 188-196.
[13] GAO Simeng, WANG Hongbo, DU Jinmei, WANG Wencong. Synthesis of polybetaine antibacterial agent and its applications in cotton textiles finishing [J]. Journal of Textile Research, 2020, 41(02): 89-94.
[14] YI Ling, ZHANG He, FU Xin, LI Wen. Preparation and far-infrared emission performance of graphene based zirconium / titanium composites modified cotton fabrics [J]. Journal of Textile Research, 2020, 41(01): 102-109.
[15] LI Yuzhou, ZHANG Yufan, ZHOU Qingqing, CHEN Guoqiang, XING Tieling. Preparation and electrochemical properties of MnO2 / graphene / cotton fabric composite electrode [J]. Journal of Textile Research, 2020, 41(01): 96-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!