Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (01): 181-189.doi: 10.13475/j.fzxb.20200101609

• Comprehensive Review • Previous Articles     Next Articles

Research status of fatigue properties characterization and analysis methods of resin matrix composites

LÜ Qingtao1,2, ZHAO Shibo1,2, DU Peijian1,2, CHEN Li1,2()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composite Materials, Ministry of Education, Tiangong University, Tianjin 300387, China
  • Received:2020-01-09 Revised:2020-09-03 Online:2021-01-15 Published:2021-01-21
  • Contact: CHEN Li E-mail:chenli@tjpu.edu.cn

Abstract:

In order to better understand the fatigue performance of textile composites research, this paper reviews the influence of fabric structure, environmental factors, self-heat during fatigue experiment on the fatigue of composite materials, and the recent research on fatigue strength model of composite materials are scrutinized. Firstly, the fatigue properties and damage of composites reinforced by different fabric structures are compared and analyzed, revealing that the fatigue and damage of composites are affected by the reinforcing structures. Environmental factors, such as water, temperature, chemical medium and ultraviolet radiation, have different damage mechanisms on textile composite materials, but they all make the composite fatigue life shorter. The spontaneous heat generated by the sample during the experiment also leads to premature failure of the composite. The problems in composite fatigue are summarized, and the development directions of composites in the future are proposed.

Key words: fabric structure, composite material, fatigue performance, fatigue strength model

CLC Number: 

  • TB332
[1] ROBERT S, PIERCE, BRIAN G. Simulating resin infusion through textile reinforcement materials for the manufacture of complex composite structures[J]. Engineering, 2017,3(5):53-78.
[2] SABOKTAKIN RIZI A. Integrity assessment of preforms and thick textile reinforced composites for aerospace applications[J]. International Journal of Immunology Research, 2013,46(8):883-894.
[3] 徐艺榕, 孙颖, 韩朝锋. 复合材料用三维机织物成型性的研究进展[J]. 纺织学报, 2014,35(9):165-172.
XU Yirong, SUN Ying, HAN Chaofeng. Research progress of formability of three-dimensional woven fabrics for composites[J]. Journal of Textile Research, 2014,35(9):165-172.
[4] SALEH M N, SOUTIS C. Recent advancements in mechanical characterisation of 3D woven composites[J]. Mechanics of Advanced Materials and Modern Processes, 2017,3(1):12.
[5] ANSARI M T, SINGH K K, AZAM M S. Fatigue damage analysis of fiber-reinforced polymer composites a review[J]. Journal of Reinforced Plastics and Composites, 2018,37(9):636-654.
[6] 贺雍律, 张鉴炜, 黄春芳, 等. CFRP层合板抗分层损伤技术研究进展[J]. 材料导报, 2018,32(13):2288-2294.
HE Yonglv, ZHANG Jianwei, HUANG Chunfang, et al. Research progress of anti-laminar damage technology of CFRP laminated plates[J]. Journal of Materials, 2012,32(13):2288-2294.
[7] SEVENOIS R D B, VAN PAEPEGEM W. Fatigue damage modeling techniques for textile composites: review and comparison with unidirectional composite modeling techniques[J]. Applied Mechanics Reviews, 2015,67(2):020802.
[8] GHORBANI V, JEDDI, DABIRYAN H. Investigation of the flexural behavior of self-consolidating mortars reinforced with net warp-knitted spacer fabrics[J]. Construction and Building Materials, 2019,232:117270.
[9] 梁佳玉, 秦志刚. 碳纤维衬纬纬编针织物增强复合材料的拉伸性能[J]. 玻璃钢/复合材料, 2018,(11):89-93.
LIANG Jiayu, QIN Zhigang. Tensile properties of carbon fiber lined knitwear reinforced composites[J]. Fiber Reinforced Plastics/Composites, 2018(11):89-93.
[10] 张中伟. 三维编织复合材料T型梁弯曲疲劳性能[D]. 上海:东华大学, 2014: 12-16.
ZHANG Zhongwei. Bending fatigue performance of three-dimensional braided composite T-beam[D]. Shanghai:Donghua University, 2014: 12-16.
[11] 陈天雄, 张铮, 王奇志, 等. 二维编织C/SiC复合材料板疲劳损伤分析[J]. 北京航空航天大学学报, 2019,45(1):192-199.
CHEN Tianxiong, ZHANG Zheng, WANG Qizhi, et al. Fatigue damage analysis of two-dimensional braided C/SiC composite plates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019,45(1):192-199.
[12] 王宇. 三维斜交机织复合材料细观结构与力学性能研究[D]. 南京:南京航空航天大学, 2017: 13-15.
WANG Yu. Study on microstructure and mechanical properties of three-dimensional skew woven composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 13-15.
[13] JIN L, HU H, SUN B, et al. Three-point bending fatigue behavior of 3D angle-interlock woven compo-site[J]. Journal of Composite Materials, 2012,46(8):883-894.
[14] 姚思远, 陈秀华. 三维机织复合材料在拉压循环载荷下的疲劳性能[J]. 复合材料学报, 2018,35(10):112-120.
YAO Siyuan, CHEN Xiuhua. Fatigue properties of three-dimensional woven composites under tensile and compressive cyclic loading[J]. Acta Materiale Composite Sinica, 2018,35(10):112-120.
[15] BILISIK K. Three-dimensional braiding for composites: a review[J]. Textile Research Journal, 2013,83(13):1414-1436.
[16] CARVELLI V, PAZMINO J, LOMOV S V, et al. Quasi-static and fatigue tensile behavior of a 3D rotary braided carbon/epoxy composite[J]. Journal of Composite Materials, 2013,47(25):3195-3209.
[17] WU L, ZHANG F, SUN B, et al. Finite element analyses on three-point low-cyclic bending fatigue of 3-D braided composite materials at microstructure level[J]. International Journal of Mechanical Sciences, 2014,84:41-53.
[18] MONTESANO J, FAWAZ Z, BEHDINAN K, et al. Fatigue damage characterization and modeling of a triaxially braided polymer matrix composite at elevated temperatures[J]. Composite Structures, 2013,101:129-137.
[19] MENG M. Multi-scale modelling of moisture diffusion coupled with stress distribution in CFRP laminated composites[J]. Composite Structures, 2016,138:295-304.
[20] MA Bilin, FENG Yu, HE Yuting, et al. Effect of hygrothermal environment on the tension-tension fatigue performance and reliable fatigue life of T700/MTM46 composite laminates[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2019,20(7):499-514.
[21] BARBIÈRE, TOUCHARD F, CHOCINSKI-ARNAULT L, et al. Influence of moisture and drying on fatigue damage mechanisms in a woven hemp/epoxy composite: acoustic emission and micro-ct analysis[J]. International Journal of Fatigue, 2020,136:105593.
[22] 刘佳琦. 环境因素对T700/HT280复合材料力学性能的影响[D]. 沈阳:沈阳航空航天大学, 2017: 22-26.
LIU Jiaqi. Effects of environmental factors on mechanical properties of T700/HT280 composites[D]. Shenyang:Shenyang Aerospace University, 2017: 22-26.
[23] 陈波, 温卫东, 崔海涛, 等. 单向碳/碳复合材料高温疲劳试验研究[J]. 推进技术, 2019,40(2):456-462.
CHEN Bo, WEN Weidong, CUI Haitao, et al. Study on unidirectional carbon/carbon composite high-temperature Fatigue test[J]. Journal of Propulsion Technology, 2019,40(2):456-462.
[24] 高禹, 刘佳琦, 王绍权. 高温老化对T700/HT280双马来酰亚胺复合材料疲劳性能的影响[J]. 复合材料学报, 2017,34(2):240-246.
GAO Yu, LIU Jiaqi, WANG Shaoquan. Effects of high-temperature aging on fatigue performance of T700/HT280 bismaleimide compo-sites[J]. Acta Materiae Composite Sinica, 2017,34(2):240-246.
[25] SONG J, WEN W, CUI H. Fatigue life prediction model of 2.5D woven composites at various temperatures[J]. Chinese Journal of Aeronautics, 2018,31(2):110-129.
[26] 陈波, 温卫东, 孙煦泽, 等. 三维编织碳/碳复合材料高温力学及疲劳试验研究[J]. 南京工业大学学报(自然科学版), 2018,40(1):8-16.
CHEN Bo, WEN Weidong, SUN Xuze, et al. Experimental study on high temperature mechanics and fatigue test of three-dimensional woven carbon/carbon composite[J]. Journal of Nanjing University of Technolo-gy (Natural Science Edition), 2018,40(1):8-16.
[27] WU P, XU L, LUO J, et al. Influences of long-term immersion of water and alkaline solution on the fatigue performances of unidirectional pultruded CFRP plate[J]. Construction and Building Materials, 2019,205(30):344-356.
[28] MARRU P, LATANE V, PUJA C, et al. Lifetime estimation of glass reinforced epoxy pipes in acidic and alkaline environment using accelerated test methodo-logy[J]. Fibers & Polymers, 2014,15(9):1935-1940.
[29] RAY B C, RATHORE D. Durability and integrity studies of environmentally conditioned interfaces in fibrous polymeric composites: critical concepts and comments[J]. Advances in Colloid & Interference, 2014,209:68-83.
[30] 许燕杰, 肇研, 汤冰洁, 等. UVA紫外辐射对室内碳纤维增强环氧树脂基复合材料性能的影响[J]. 复合材料学报, 2013,30(2):63-69.
XU Yanjie, ZHAO Yan, TANG Bingjie, et al. Effect of UVA ultraviolet radiation on properties of carbon fiber reinforced epoxy matrix composites[J]. Acta Materiale Composite Sinica, 2013,30(2):63-69.
[31] EFTEKHARI M, FATEMI A. On the strengthening effect of increasing cycling frequency on fatigue behavior of some polymers and their composites: experiments and modeling[J]. International Journal of Fatigue, 2016,87(7):153-166.
[32] MORTAZAVIAN S, FATEMI A, MELLOTT S R, et al. Effect of cycling frequency and self-heating on fatigue behavior of reinforced and unreinforced thermoplastic polymers[J]. Polymer Engineering & Ence, 2015,55(10):2355-2367.
[33] GORNET L, WESPHAL, OPHLIE, BURTIN C, et al. Rapid determination of the high cycle fatigue limit curve of carbon fiber epoxy matrix composite laminates by thermography methodology: tests and finite element simulations[J]. Procedia Engineering, 2013,66:697-704.
[34] MARIN J C, JUSTO J, PARÍS F, et al. The effect of frequency on tension: tension fatigue behavior of unidirectional and woven fabric graphite-epoxy composites[J]. Mechanics of Advanced Materials and Structures, 2018,26(17):1430-1436.
[35] XARGAY H, FOLINO, NUNEZ N, et al. Acoustic emission behavior of thermally damaged self-compacting high strength fiber reinforced concrete[J]. Construction and Building Materials, 2018,187:519-530.
[36] KATUNIN A. Evaluation of criticality of self-heating of polymer composites by estimating the heat dissipation rate[J]. Mechanics of Composite Materials, 2018,54(1):53-60.
[37] KATUNIN A, WRONKOWICZ A. Characterization of failure mechanisms of composite structures subjected to fatigue dominated by the self-heating effect[J]. Composite Structures, 2017,180:1-8.
[38] TURCZYN R, KRUKIEWICZ K, KATUNIN A. Spectroscopic evaluation of structural changes in composite materials subjected to self-heating effect[J]. Composite Structures, 2018,204:192-197.
[39] RATNER S B, KOROBOV V I. Self-heating of plastics during cyclic deformation[J]. Polymer Mechanics, 1965,1(3):63-68.
[40] KAHIRDEH A, NADERI M, KHONSARI M. On the role of cooling on fatigue failure of a woven glass/epoxy laminate[J]. Journal of Composite Materials, 2013,47(15):1803-1816.
[41] LAHUERTA F, WESTPHAL T, NIJSSEN R P L. Self-heating forecasting for thick laminate specimens in fatigue[J]. Journal of Physics (Conference Series), 2014,555:012062.
[42] KATUNIN A, WACHLA D. Influence of air cooling onthe fatigue of a polymer composite under self-heating[J]. Mechanics of Composite Materials, 2020,56(1):93-102.
[43] TONG X, CHEN X, XU J S, et al. The heat build up of a polymer matrix composite under cyclic loading:experimental assessment and numerical simulation[J]. International Journal of Fatigue, 2018,116:323-333.
[44] HASHIN Z, ROTEM A. Fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials, 1973,7(4):448-464.
[45] SEVENOIS R D B, VAN PAEPEGEM W. Fatigue damage modeling techniques for textile composites: review and comparison with unidirectional composite modeling techniques[J]. Applied Mechanics Reviews, 2015,67(2):021401.
[46] 马丹, 方允伟, 王佳庆, 等. 高性能玻璃纤维增强树脂基复合材料拉-压疲劳行为[J]. 宇航材料工艺, 2018,48(4):63-66.
MA Dan, FANG Yunwei, WANG Jiaqing, et al. Tensile and compressive fatigue behavior of high-performance fiberglass reinforced resin matrix composites[J]. Aerospace Materials Technology, 2018,48(4):63-66.
[47] 张亚騤, 周瑞祥, 郭书祥, 等. 压气机叶片复合疲劳试验系统的设计及疲劳寿命分析[J]. 航空动力学报, 2017,32(12):2880-2887.
ZHANG Yakui, ZHOU Ruixiang, GUO Shuxiang, et al. Design and fatigue life analysis of compressor blade composite fatigue test system[J]. Journal of Aeronautical Dynamics, 2017,32(12):2880-2887.
[48] KAWAI M, YANO K. Probabilistic anisomorphic constant fatigue life diagram approach for prediction of P-S-N curves for woven carbon/epoxy laminates at any stress ratio[J]. Composites Part A (Applied Science and Manufacturing), 2016,80:244-258.
[49] KSWS M, MATSUDA Y, YOSHIMURA R. A general method for predicting temperature-dependent anisomorphic constant fatigue life diagram for a woven fabric carbon/epoxy laminate[J]. Composites Part A, 2012,43(6):915-925.
[50] YAGIHASHI Y, HOSHI H, et al. Anisomorphic constant fatigue life diagrams for quasi-isotropic woven fabric carbon/epoxy laminates under different hygro-thermal environments[J]. Advanced Composite Materials, 2013,22(2):79-98.
[51] CHEBBI E, MARS, HENTATI H, et al. A new cumulative fatigue damage model for short glass fiber-reinforced polyamide 66[J]. Design and Modeling of Mechanical Systems, 2018,207169:227-234.
[52] 朱元林, 温卫东, 刘礼华, 等. 单向碳/碳复合材料拉-拉疲劳寿命及剩余强度预测模型[J]. 复合材料学报, 2018,35(8):2293-2301.
ZHU Yuanlin, WEN Weidong, LIU Lihua, et al. Prediction model of tensile fatigue life and residual strength of unidirectional carbon/carbon composites[J]. Acta Materiale Composites Sinica, 2018,35(8):2293-2301.
[53] SHAO Y, OKUBO K, FUJII T, et al. Effect of matrix properties on the fatigue damage initiation and its growth in plain woven carbon fabric vinylester composites[J]. Composites Ence and Technology, 2014,104:125-135.
[54] WHITWORTH H A. Evaluation of the residual strength degradation in composite laminates under fatigue loading[J]. Composite Structures, 2000,48(4):261-264.
[55] HOSOI A, SATO N, KUSUMOTO Y, et al. High-cycle fatigue characteristics of quasi-isotropic CFRP laminates over 10~8 cycles (initiation and propagation of delamination considering interaction with transverse cracks)[J]. International Journal of Fatigue, 2010,32(1):29-36.
[56] NENADSTOJKOVI C. Mathematical model for the prediction of strength degradation of composites subjected to constant amplitude fatigue[J]. International Journal of Fatigue, 2017,103:478-487.
[57] YANG J N, LEE L J, SHEU D Y. Modulus reduction and fatigue damage of matrix dominated composite laminates[J]. Composite Structures, 1992,21(2):91-100.
[58] WU Wen. A study of fatigue damage and fatigue life of composite laminates[J]. Journal of Composite Materials, 1996,30(1):123-137.
[59] 吴增文. 复合材料薄壁结构随机疲劳损伤模型及分析[D]. 哈尔滨:哈尔滨工业大学, 2019: 65-70.
WU Zengwen. Stochastic fatigue damage model and Analysis of composite thin-wall structures[D]. Harbin:Harbin Institute of Technology, 2019: 65-70.
[60] 罗白璐, 朱英富, 李之达, 等. 夹芯结构的疲劳裂纹损伤扩展研究[J]. 船舶力学, 2019,23(8):988-996.
LUO Baolu, ZHU Yingfu, LI Zhida, et al. Study on fatigue crack damage growth of sandwich structures[J]. Ship Mechanics, 2019,23(8):988-996.
[61] 陈基伟, 姚卫星, 宗俊达, 等. 复合材料剩余刚度概率模型研究[J]. 南京航空航天大学学报, 2019,51(4):534-539.
CHEN Jiwei, YAO Weixing, ZONG Junda, et al. Studyon probability model of residual stiffness of composite materials[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2019,51(4):534-539.
[62] 宗俊达, 姚卫星. 复合材料剩余刚度退化复合模型[J]. 复合材料学报, 2016,33(2):280-286.
ZONG Junda, YAO Weixing. Composite residual stiffness degradation composite model of composite materials[J]. Acta Materiae Composites Sinica, 2016,33(2):280-286.
[63] PARK K J, KANG H J, CHOI I H, et al. Progressivefailure analysis of carbon-fiber reinforced polymer (CFRP) laminates using combined material nonlinear elasticity and continuum damage mechanics based on treatment of coupon test[J]. Journal of Composite Materials, 2015,488/489:525-529.
[64] 康军, 陈永强, 陈尚, 等. 基于加速试验方法的复合材料长期寿命预测[J]. 玻璃钢/复合材料, 2017(3):25-30.
KANG Jun, CHEN Yongqiang, CHEN Shang, et al. Long-term life prediction of composites based on accelerated test method[J]. Fiber Reinforced Plastics/Composites, 2017(3):25-30.
[65] 王奇志, 张迪, 林慧星. 高温下C/SiC复合材料疲劳寿命预估方法研究[J]. 计算机仿真, 2019,36(7):208-212.
WANG Qizhi, ZHANG Di, LIN Huixing. Study on fatigue life prediction method of C/SiC composites at high temperature[J]. Computer Simulation, 2019,36(7):208-212.
[66] XU J, LOMOV S V, VERPOEST I, et al. A progressive damage model of textile composites on meso-scale using finite element method: fatigue damage analysis[J]. Computers & Structures, 2015,152:96-112.
[67] ZHANG L, HU D, WANG R, et al. Establishing RVE model composed of dry fibers and matrix for 3D four-directional braided composites[J]. Journal of Composite Materials, 2018,53(14):1917-1934.
[68] SHEN X. RVE model with porosity for 2D woven CVI SiCf/SiC composites[J]. Journal of Materials Engineering & Performance, 2016,25(12):5138-5144.
[1] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[2] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[3] LIU Muli, YUAN Li, YANG Yali, LIU Junping, GONG Xue, YAN Yuchen. Influence of fabric weaves on characteristics of colored patterns in color-woven fabrics [J]. Journal of Textile Research, 2020, 41(09): 45-53.
[4] CHEN Lifu, YU Weidong. Stab resistance of composites with synthetic diamond filled polyimide resin matrix [J]. Journal of Textile Research, 2020, 41(05): 38-44.
[5] LI Peng, WAN Zhenkai, JIA Minrui. Damage monitoring of composite materials based on twist energy of carbon nanotube yarns [J]. Journal of Textile Research, 2020, 41(04): 58-63.
[6] ZHANG Hengyu, ZHANG Xiansheng, XIAO Hong, SHI Meiwu. Research progress of two-dimensional carbide in field of flexible electromagnetic absorbing [J]. Journal of Textile Research, 2020, 41(03): 182-187.
[7] LI Danyang, WANG Rui, LIU Xing, ZHANG Shujie, XIA Zhaopeng, YAN Ruosi, DAI Erqing. Effect of shear thickening fluid on quasi-static stab resistance of aramid-based soft armor materials [J]. Journal of Textile Research, 2020, 41(03): 106-112.
[8] LI Yuzhou, ZHANG Yufan, ZHOU Qingqing, CHEN Guoqiang, XING Tieling. Preparation and electrochemical properties of MnO2 / graphene / cotton fabric composite electrode [J]. Journal of Textile Research, 2020, 41(01): 96-101.
[9] WANG Xianfeng, GAO Tiancheng, XIAO Jun. Research progress of stitching technology of composite materials [J]. Journal of Textile Research, 2019, 40(12): 169-177.
[10] ZHANG Aidan, ZHOU Jiu. Color rendering characteristics of fabric structure based on halftone design of image color [J]. Journal of Textile Research, 2019, 40(09): 56-61.
[11] SONG Xing, ZHU Chengyan, CAI Fengjie, LÜ Zhining, TIAN Wei. Influence of alkali treatment on mechanical properties of polyester/photosensitive resin composites [J]. Journal of Textile Research, 2019, 40(07): 97-102.
[12] WANG Xinhou, ZHANG Linmei, SUN Xiaoxia. Preparation of flexible puncture-proof polyester/SiC and puncture-proof property [J]. Journal of Textile Research, 2019, 40(06): 171-175.
[13] YANG Haizhen, FANG Kuanjun, LIU Xiuming, CAI Yuqing, AN Fangfang, HAN Shuang. Influence of ink-jet printing pretreatment on fabric structures [J]. Journal of Textile Research, 2019, 40(05): 84-90.
[14] MIAO Runwu, JIN Lihua, WEI Qiyu, HAN Xiao, HONG Jianhan. Preparation and electromagnetic shielding property of conductive poly(p-phenylene terephamide) of reinforced composite materials [J]. Journal of Textile Research, 2019, 40(02): 100-104.
[15] . Research progress on graphene/silk composite materials [J]. Journal of Textile Research, 2018, 39(10): 168-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!