Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (10): 197-204.doi: 10.13475/j.fzxb.20200102308

• Comprehensive Review • Previous Articles    

Research progress in detection of hydrogen peroxide concentration

XIANG Zhong(), WANG Yuhang, WU Jinbo, QIAN Miao, HU Xudong   

  1. Faculty of Mechanical Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-01-07 Revised:2020-06-26 Online:2020-10-15 Published:2020-10-27

Abstract:

In order to effectively solve problems in the concentration detection of hydrogen peroxide (HP) in textile process, and to improve the accuracy, efficiency and range of the detection, this paper reviewed on the detection method and mathematical model of HP. Six methods for detecting HP concentration were examined, including conventional titration, electrochemical analysis, spectrophotometry, fluorescence/chemiluminescence, refractive index and microwave. The principle, research progress and applicability of each method were analyzed. It is found that although the conventional titration method has high precision, it is more time and energy consuming. Electrochemical analysis has fast response and strong anti-interference ability. The cost of spectrophotometry is high and it is relatively more complicated. Fluorescence/chemiluminescence method has high sensitivity but more shows interference. The refractive index and microwave methods are highly sensitive, but at present they apply only to single component solutions. According to the analysis, electrochemical analysis is deemed to be more suitable for detecting HP in the textile process, and the effective solution to ohmic drop caused by high concentration of HP would be the one of the focuses for future research.

Key words: hydrogen peroxide, concentration test, mathematical model, fabric bleaching, electrochemical analysis

CLC Number: 

  • TP216
[1] 宋春林, 张志丰, 幺洪波, 等. 过氧化氢的供需现状和发展趋势[J]. 氯碱工业, 2010,46(4):21-23.
SONG Chunlin, ZHANG Zhifeng, YAO Hongbo, et al. Supply and demand situation and development trend of lhydrogen peroxide[J]. Chlor-Alkali Industry, 2010,46(4):21-23.
[2] 黄益, 李思琪, 阮斐斐, 等. 卟啉铁/双氧水体系在棉织物低温催化漂白中的应用[J]. 纺织学报, 2018,39(6):75-80.
HUANG Yi, LI Siqi, RUAN Feifei, et al. Hematin chloride/hydrogen peroxide in the application of the low temperature catalytic bleached cotton fabrics[J]. Journal of Textile Research, 2018,39(6):75-80.
[3] 王雪燕. 双氧水低温低碱漂白技术的研究现状及其发展趋势[J]. 成都纺织高等专科学校学报, 2016,33(2):134-138.
WANG Xueyan. Research status and development trend of low temperature and low alkali bleaching of hydrogen peroxide[J]. Journal of Chengdu Textile College, 2016,33(2):134-138.
[4] DANNACHER J, SCHLENKER W. The mechanism of hydrogen peroxide bleaching[J]. Textile Chemist and Colorist, 1996,28(11):24-28.
[5] 张帆, 张儒, 周文常, 等. 金属铜配合物催化双氧水用于棉针织物的低温漂白[J]. 纺织学报, 2019,40(8):101-108.
ZHANG Fan, ZHANG Ru, ZHOU Wenchang, et al. Low temperature bleaching of cotton knitwear using hydrogen peroxide catalyzed by copper complexes[J]. Journal of Textile Research, 2019,40(8):101-108.
doi: 10.1177/004051757004000202
[6] 唐文君, 彭明华, 向中林, 等. 应用阳离子漂白活化剂的棉织物快速轧蒸漂白工艺[J]. 纺织学报, 2019,40(2):125-129.
TANG Wenjun, PENG Minghua, XIANG Zhonglin, et al. Fast rolling and steaming bleaching process for cotton fabrics using cationic bleaching activator[J]. Journal of Textile Research, 2019,40(2):125-129.
[7] 陈加敏, 孟家光, 薛涛. 双氧水漂白活化剂概述[J]. 染整技术, 2016,38(12):6-9.
CHEN Jiamin, MENG Jiaguang, XUE Tao. Summary of hydrogen peroxide bleaching activators[J]. Textile Dyeing and Finishing Journal, 2016,38(12):6-9.
[8] 龚安华, 孙岳玲. 基于混凝-吸附-氧化法的印染废水处理[J]. 纺织学报, 2012,33(4):95-99.
GONG Anhua, SUN Yueling. Test on dyeing and printing wastwater treatment by coagulation-adsorption-oxidation[J]. Journal of Textile Research, 2012,33(4):95-99.
[9] 栗玉鸿. Fenton氧化法去除制革废水中难降解鞣剂的研究[D]. 哈尔滨:哈尔滨工业大学, 2011: 11-14.
LI Yuhong. Study on removal of refractory tanning agents from leather wastewater by Fenton oxidation[D]. Harbin: Harbin Institute of Technology, 2011: 11-14.
[10] FENTON H J H. Oxidation of tartaric acid in presence of iron[D]. Journal of the Chemical Society, 1894,65:899-910.
doi: 10.1039/CT8946500899
[11] 李凤娟, 宿辉, 李小龙, 等. 高级氧化技术在难降解工业废水处理中的应用研究进展[J]. 环保科技, 2017,23(2):55-57.
LI Fengjuan, SU Hui, LI Xiaolong, et al. Application of advanced oxidation technology in the treatment of refractory industrial wastewater[J]. Environmental Protection and Technology, 2017,23(2):55-57.
[12] 吴梦霞, 孙梅香, 兰天翔, 等. 新型光电-Fenton法处理印染废水的研究[J]. 水处理技术, 2019,45(12):86-90.
WU Mengxia, SUN Meixiang, LAN Tianxiang, et al. A new photoelectricity-Fenton method for the treatment of printing and dyeing wastewater[J]. Technology of Water Treatment, 2019,45(12):86-90.
[13] 彭忠勇, 曹永民. 自动电位滴定仪在双氧水装置在线分析中的应用[J]. 石化技术, 2018,25(9):330.
PENG Zhongyong, CAO Yongmin. Application of automatic potentiometric titrator in on-line analysis of hydrogen peroxide device[J]. Petrochemical Industry Technology, 2008,25(9):330.
[14] 关会娟. 碳纳米纤维复合材料制备及其过氧化氢电化学传感性能研究[D]. 郑州:郑州大学, 2018: 7-8.
GUAN Huijuan. Preparation of carbon nanofiber composites and their electrochemical sensing properties of hydrogen peroxide[D]. Zhengzhou: Zhengzhou University, 2018: 7-8.
[15] 张祥琼, 刘波, 张凌云. 电化学分析法在水质分析与监测中的应用综述[J]. 城镇供水, 2018(1):31-35.
ZHANG Xiangqiong, LIU Bo, ZHANG Linyun. Application of electrochemical analysis in water quality analysis and monitoring[J]. Journal of China Urban Water Association, 2018(1):31-35.
[16] 陈成, 崔建生, 龚燕华, 等. 氯离子检测技术探究—直接电位法[J]. 建材世界, 2019,40(1):102-105.
CHEN Cheng, CUI Jiansheng, GONG Yanhua, et al. Study on chloride ion detection technology-direct potential method[J]. The World of Building Materials, 2019,40(1):102-105.
[17] ANANTHI A, NARESH K, MATHIYARASU J, et al. A novel potentiometric hydrogen peroxide sensor based on pKa changes of vinylphenylboronic acid mem-branes[J]. Materials Letters, 2011,65(23/24):3563-3565.
doi: 10.1016/j.matlet.2011.07.087
[18] AWAD M I, ORITANI T, OHSAKA T. Simultaneous potentiometric determination of peracetic acid and hydrogen peroxide[J]. Analytical Chemistry, 2003,75(11):2688-2693.
pmid: 12948137
[19] PARRILLA M, CÁNOVAS R, ANDRADE F J. Enhanced potentiometric detection of hydrogen peroxide using a platinum electrode coated with nafion[J]. Electroanalysis, 2017,29(1):223-230.
doi: 10.1002/elan.v29.1
[20] 陈家全. 流动注射不可逆双安培分析法研究及其应用[D]. 西安:西北大学, 2004: 2-5.
CHEN Jiaquan. Study and application of flow injection irreversible double ampere analysis method[D]. Xi'an: Northwestern University, 2004: 2-5.
[21] SAZHINA N N. Determination of antioxidant activity of various bioantioxidants and their mixtures by the amperometric method[J]. Russian Journal of Bioorganic Chemistry, 2017,43(7):771-775.
doi: 10.1134/S1068162017070147
[22] WESTBROEK P, TEMMERMAN E, KIEKENS P. Measurement and control of hydrogen peroxide concentration in alkaline solution by means of amperometric sensor system[J]. Analytica Chimica Acta, 1999,385(1):423-428.
doi: 10.1016/S0003-2670(98)00604-7
[23] 金根娣, 乔秋菊, 胡效亚. 硫酸双肼屈嗪修饰玻碳电极安培法测定过氧化氢[J]. 分析科学学报, 2011,27(3):293-296.
JIN Gendi, QIAO Qiuju, HU Xiaoya. Determination of hydrogen peroxide with dihydrazine sulfate modified glass carbon electrode amperometry[J]. Journal of Analytical Sciences, 2011,27(3):293-296.
[24] 范慧敏, 邓春艳, 阳明辉, 等. 基于新型二氧化锰-碳纳米管复合材料的高灵敏过氧化氢传感器[J]. 分析科学学报, 2012,28(4):459-464.
FAN Huimin, DENG Chunyan, YANG Minghui, et al. High sensitivity hydrogen peroxide sensor based on new manganese dioxide-carbon nanotube composites[J]. Journal of Analytical Science, 2012,28(4):459-464.
[25] WU M Q, SNOOK G A, GUPTA V, et al. Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline[J]. Journal of Materials Chemistry, 2005,15(23):2297-2303.
doi: 10.1039/b418835g
[26] TERZI F, PELLICIARI J, ZANFROGNINI B, et al. Behaviour of Ti electrode in the amperometric determination of high concentrations of strong oxidising species[J]. Electrochemistry Communications, 2013,34:138-141.
doi: 10.1016/j.elecom.2013.05.042
[27] KNITTEL D, WEI Q, SCHOLLMEYER E. Strategies for the development of a voltammetric sensor for the determination of hydrogen peroxide at high concentrations[J]. Fresenius' Journal of Analytical Chemistry, 1994,348(12):820-824.
doi: 10.1007/BF01780984
[28] WESTBROEK P, TEMMERMAN E, KIEKENS P. Measurement and control of hydrogen peroxide concentration in alkaline solution by means of amperometric sensor system[J]. Analytica Chimica Acta, 1999,385(1):423-428.
doi: 10.1016/S0003-2670(98)00604-7
[29] 罗思苑. 对库伦法测定COD的改良[J]. 环境, 2011(S1):55-56.
LUO Siyuan. Improvement of coulomb method for determination of COD[J]. Environment, 2011(S1):55-56.
[30] FIEDLER U. Coulometric microdetermination of peroxides—I. hydrogen peroxide[J]. Talanta, 1973,20(11):1097-1104.
doi: 10.1016/0039-9140(73)80071-2 pmid: 18961387
[31] YUE Hongfei, BU Xin, HUANG Mingsing, et al. Quantitative determination of trace levels of hydrogen peroxide in crospovidone and a pharmaceutical product using high performance liquid chromatography with coulometric detection[J]. International Journal of Pharmaceutics, 2009,375(1):33-40.
doi: 10.1016/j.ijpharm.2009.03.027
[32] JUÁREZ-GÓMEZ J, ROSAS-TATE E S, ROA-MORALES G, et al. Laccase inhibition by mercury: kinetics, inhibition mechanism, and preliminary application in the spectrophotometric quantification of mercury ions[J]. Journal of Chemistry, 2018. DOI: 10.1155/2018/746297.
doi: 10.1155/2013/262580 pmid: 25705550
[33] WANG Mengyun, WANG Daiyao, QIU Shiyi, et al. Multi-wavelength spectrophotometric determination of hydrogen peroxide in water by oxidative coloration of ABTS via Fenton reaction[J]. Environmental Science and Pollution Research International, 2019,26:27063-27072.
pmid: 31313234
[34] SELLERS R M. Spectrophotometric determination of hydrogen peroxide using potassium titanium (IV) oxalate[J]. Analyst, 1980,105(1255):950-954.
doi: 10.1039/an9800500950
[35] XIAO Junyang, WANG Mengyun, PANG Zijun, et al. Simultaneous spectrophotometric determination of peracetic acid and the coexistent hydrogen peroxide using potassium iodide as the indicator[J]. Analytical Methods, 2019,11(14):1-21.
doi: 10.1039/C9AY90001B
[36] ZOU Jing, CAI Huahua, WANG Daiyao, et al. Spectrophotometric determination of trace hydrogen peroxide via the oxidative coloration of DPD using a Fenton system[J]. Chemosphere, 2019,224:646-652.
doi: 10.1016/j.chemosphere.2019.03.005 pmid: 30849625
[37] 何焱焱. 基于过氧化氢氧化的化学发光新方法研究及其应用[D]. 重庆:西南大学, 2017: 1-14.
HE Yanyan. Research and application of a new chemiluminescence method based on hydrogen peroxide oxidation[D]. Chongqing: Southwest university, 2017: 1-14.
[38] CUI M L, LIU J M, WANG X X, et al. A promising gold nanocluster fluorescent sensor for the highly sensitive and selective detection of S2[J]. Sensors and Actuators B: Chemical, 2013,188:53-58.
doi: 10.1016/j.snb.2013.05.098
[39] CHEN Z, QIAN S, CHEN X, et al. Protein-templated gold nanoclusters as fluorescence probes for the detection of methotrexate[J]. Analyst, 2012,137(18):4356-4361.
pmid: 22836488
[40] XIONG X, TANG Y, ZHANG L, et al. A label-free fluorescent assay for free chlorine in drinking water based on protein-stabilized gold nanoclusters[J]. Talanta, 2015,132:790-795.
doi: 10.1016/j.talanta.2014.10.022 pmid: 25476379
[41] ZHANG J J, WU M, CHEN D H, et al. Ultrasensitive determination of melamine in milk products and biological fluids by luminol-hydrogen peroxide chemiluminescence[J]. Journal of Food Composition and Analysis, 2011,24(7):1038-1042.
doi: 10.1016/j.jfca.2010.09.021
[42] 董淼, 董文飞, 黄玉明, 等. 金属有机框架NH_2-MIL-88增强过氧化氢氧化鲁米诺化学发光法检测过氧化氢[J]. 西南大学学报(自然科学版), 2017,39(3):134-136.
DONG Miao, DONG Wenfei, HUANG Yuming, et al. Detection of hydrogen peroxide by nh_2-MIL-88 enhanced hydrogen peroxide oxidation luminol chemiluminescence in metal organic framework[J]. Journal of Southwest University (Natural Science Edition), 2017,39(3):134-136.
[43] MARCHAND A, ROULLAND I, SEMENCE F, et al. Volumetric absorptive microsampling (VAMS) technology for IGF-1 quantification by automated chemiluminescent immunoassay in dried blood[J]. Growth Hormone & IGF Research, 2020,50:27-34.
doi: 10.1016/j.ghir.2019.12.001 pmid: 31835105
[44] PENG Baojin. Sensitive hydrogen peroxide content measurement technology using refractive-index-based optical device[C]// YING Chaofu, YE Huiqun, et al, Proceedings of SPIE. Bellingham: SPIE, 2005: 568-574.
[45] CHOI H. A novel concentration detection method of hydrogen peroxide using microwave cavity perturbation technique[C]// Cuenca J, Attard G. proceedings of 2014 44th European Microwave Conference. Rome: IEEE, 2014: 632-635.
[46] 古映莹, 李丹. 高锰酸钾法、碘量法和铈量法测定过氧化氢的比较[J]. 理化检验(化学分册), 2007(9):788-791.
GU Yingying, LI Dan. Comparison of potassium permanganate method, iodine method and cerium method for determination of hydrogen peroxide[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2007(9):788-791.
[47] KAZEMI ESFEH H, HAMID M K A. Algebraic form and new approximation of butler-volmer equation to calculate the activation overpotential[J]. Journal of Electrochemical Energy Conversion and Storage, 2016,13(2):1-10.
[48] NOREN D A, HOFFMAN M A. Clarifying the Butler-Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models[J]. Journal of Power Sources, 2005,152(1):175-181.
doi: 10.1016/j.jpowsour.2005.03.174
[49] MANN R F, AMPHLETT J C, PEPPLEY B A, et al. Application of Butler-Volmer equations in the modelling of activation polarization for PEM fuel cells[J]. Journal of Power Sources, 2006,161(2):775-781.
doi: 10.1016/j.jpowsour.2006.05.026
[50] HESS A, ROODE-GUZMER Q, HEUBNER C, et al. Determination of state of charge-dependent asymmetric Butler-Volmer kinetics for LixCoO2 electrode using GITT measurements[J]. Journal of Power Sources, 2015,299:156-161.
doi: 10.1016/j.jpowsour.2015.07.080
[51] CHAI X S, HOU Q X, LUO Q, et al. Rapid determination of hydrogen peroxide in the wood pulp bleaching streams by a dual-wavelength spectroscopic method[J]. Analytica Chimica Acta, 2004,507(2):281-284.
doi: 10.1016/j.aca.2003.11.036
[52] WALDRON R A. Perturbation theory of resonant cavities[J]. Proceedings of the IEEE Part C: Monographs, 1960,107(12):272-274.
doi: 10.1049/pi-c.1960.0041
[1] ZHOU Qihong, SUN Baotong, CEN Junhao, ZHAN Qichen. Measurement method of winding density of cheese package based on laser scanning and modeling [J]. Journal of Textile Research, 2021, 42(01): 96-102.
[2] ZHANG Fan, ZHANG Ru, ZHOU Wenchang, ZHOU Hui, WANG Nanfang. Low-temperature bleaching of cotton knitted fabrics using hydrogen peroxide in presence of copper complex catalysts [J]. Journal of Textile Research, 2019, 40(08): 101-108.
[3] XU Yunlong, XIA Fenglin. Influence of interval distance of double-needle bed warp-knitting machine on yarn demand [J]. Journal of Textile Research, 2019, 40(08): 151-156.
[4] WU Chenren, LÜ Wangyang, CHEN Wenxing. Application of copper complex in low-temperature neutral bleaching of cotton knitted fabrics [J]. Journal of Textile Research, 2019, 40(01): 91-96.
[5] . Prediction model on tensile strength of air jet vortex spinning yarn and its verification [J]. Journal of Textile Research, 2018, 39(10): 32-37.
[6] . Arrangement of garment production line by particle swarm algorithm [J]. Journal of Textile Research, 2018, 39(10): 120-124.
[7] . Modeling and numerical simulating for for residual ammonia volatilization from yarn bobbin [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 149-154.
[8] . Modeling and tensile performance of negative Poissin's ratio warp-knitted spacer structures based on mesh structure [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 59-65.
[9] . Out-of–plane deformation of tight woven fabric under high air pressure [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 49-55.
[10] . Automatic construction of digital woven fabric using sequence yarn images [J]. Journal of Textile Research, 2016, 37(3): 35-40.
[11] . Weaving techniques and mathematical model of techniques for patterned simple gauze of Song dynasty [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 42-47.
[12] . Mathematical modeling of air friction duag of clothing fabric surface [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 50-55.
[13] . Novel cut pile mechanism on tufting carpet loom [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(06): 118-123.
[14] . Mechanical properties of electrospun silk fibroin/poly (ε-caprolactone) nanofibrous membranes under biaxial tensile loads with different tensile rates [J]. Journal of Textile Research, 2015, 36(06): 18-23.
[15] . Mechanical properties of electrospun aligned silk fibroin/poly(ε-caprolactone) nanofibrous membranes under biaxial tensile loads [J]. Journal of Textile Research, 2015, 36(04): 31-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!