Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 27-33.doi: 10.13475/j.fzxb.20200202407

• Fiber Materials • Previous Articles     Next Articles

Preparation and performance of colorimetric humidity sensor using polyacrylonitrile/CoCl2 nanofibers

SUN Qian1, KAN Yan1, LI Xiaoqiang1,2(), GAO Dekang2   

  1. 1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Bosideng International Holding Co., Ltd., Changshu, Jiangsu 215532, China
  • Received:2020-02-13 Revised:2020-08-08 Online:2020-11-15 Published:2020-11-26
  • Contact: LI Xiaoqiang E-mail:lixiaoqiang@jiangnan.edu.cn

Abstract:

Polyacrylonitrile(PAN)/CoCl2 composite nanofibers were prepared by electrospinning for colorimetric detection of ambient humidity. Scanning electron microscopy, Fourier infrared spectrometer and energy dispersive X-ray spectrometer were used to characterize and analyze the microstructure and surface morphology of the PAN/CoCl2 nanofibers. Ultraviolet-visible spectrophotometer was used to analyze the reflection spectra of the fiber under different humidity and saturated vapor atmosphere with different organic solvents, and the electrochemical workstation was used to test the response and recovery capacity of the sensor under different humidity environment. The results show that PAN/CoCl2 nanofibers are able to maintain their structural stability in strong acid and strong base solutions. The nanofibers change their color from blue to pink, when relative humidity changes from 11% to 98%. Furthermore, the color change process is reversible and the response and recovery speed is fast. Under the humidity environment of 11%-75%, electric current reaches 1 023 nA within 12 s. When the humidity is decreased to 11%, the electric current drops from 2 187 nA to 10 nA within 2 s, which has the ability of rapid response and recovery.

Key words: colorimetric humidity sensor, nanofiber, cobalt chloride, polyacrylonitrile, reflection spectrum

CLC Number: 

  • TS159

Fig.1

Preparation diagram of PAN/CoCl2 nanofiber colorimetric humidity sensor"

Fig.2

SEM images of PAN (a) and PAN/CoCl2 (b)nanofiber membranes(×10 000)"

Fig.3

EDS spectrua (a) and element distribution (b)of PAN/CoCl2 nanofiber membrane"

Fig.4

FT-IR spectra of PAN/CoCl2 nanofiber membranes in 11% and 98% relative humidity states"

Fig.5

Photograph (a) and ultraviolet-visible absorption spectra (b) of CoCl2/DMF and CoCl2/distilled water solution"

Fig.6

Reflectivity spectra of PAN/CoCl2 nanofiber membranes in different relative humidity"

Fig.7

(x, y) value of PAN/CoCl2 nanofiber membranes in different relative humidity"

Fig.8

Photographs of patterns based on PAN/CoCl2 nanofiber membranes at 11% and 98% relative humidity"

Fig.9

RGB distance variation of PAN/CoCl2 nanofiber membranes. (a) RGB distance change curve under different relative humidity; (b) RGB distance thermal stability curve"

Tab.1

(x,y) of PAN/CoCl2 nanofibers membrane under VOCs and relative humidity of 98%"

环境条件 (x,y) 环境条件 (x,y)
乙酸 (0.285 0,0.323 4) 乙醇 (0.281 8,0.324 2)
丙酮 (0.285 7,0.325 1) 甲苯 (0.282 5,0.324 5)
(0.287 0,0.324 9) 二甲基亚砜 (0.284 9,0.324 1)
三氯甲烷 (0.283 1,0.322 1) 甲醛 (0.285 5,0.324 6)
N,N-二甲基
甲酰胺
(0.285 3,0.324 4) 相对湿度
为98%环境
(0.318 6,0.333 2)

Fig.10

Color images of PAN/CoCl2 nanofibers exposure to various VOCs and humidity of 98%. (a) Acetic acid;(b) Ethanol; (c) Acetone; (d) Methylbenzene;(e) Benzene; (f) DMSO;(g) Chloroform;(h) Methanol; (i) DMF; (j) RH 98%"

Fig.11

Dynamic response and recovery curves under different relative humidity(a)and humidity from 11% to 75% (b)"

[1] WANG Zhihao, ZHANG Yihe, WANG Wenjiang, et al. High performance of colorimetric humidity sensors based on minerals[J]. Chemical Physics Letters, 2019,727:90-94.
[2] LI Peiwen, ZHENG Xuejun, ZHANG Yong, et al. Humidity sensor based on electrospun (Na0.5Bi0.5)(0.94) TiO3-Ba0.06TiO3 nanofibers[J]. Ceramics International, 2015,41(10):14251-14257.
[3] LIANG Shuai, HE Xiaowei, WANG Fei, et al. Highly sensitive humidity sensors based on LiCl-Pebax 2533 composite nanofibers via electrospinning[J]. Sensor Actuat B-Chem, 2015,208:363-368.
[4] IYENGAR S A, SRIKRISHNARKA P, JANA S K, et al. Surface-treated nanofibers as high current yielding breath humidity sensors for wearable electronics[J]. Acs Appl Electron Ma, 2019,1(6):951-960.
[5] YIN M, YANG F, WANG Z J, et al. A fast humidity sensor based on Li+-doped SnO2 one-dimensional porous nanofibers [J]. Materials, 2017,10(5):535.
[6] ZHU P H, LIU Y, FANG Z Q, et al. Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotube composite film[J]. Langmuir, 2019,35(14):4834-4842.
doi: 10.1021/acs.langmuir.8b04259 pmid: 30892906
[7] BRIDGEMAN D, CORRAL J, QUACH A, et al. Colorimetric humidity sensor based on liquid composite materials for the monitoring of food and pharmaceu-ticals[J]. Langmuir, 2014,30(35):10785-10791.
pmid: 25141132
[8] BUMBUDSANPHAROKKE N, LEE W, CHUNG U, et al. Study of humidity-responsive behavior in chiral nematic cellulose nanocrystal films for colorimetric response[J]. Cellulose, 2018,25(1):305-317.
[9] KIM S, HAN S, KOH Y G, et al. Colorimetric humidity sensor using inverse opal photonic gel in hydrophilic ionic liquid[J]. Sensors, 2018,18(5):1357.
[10] 何贤培. 无重金属湿敏变色功能材料的研究[J]. 广东化工, 2016,43(17):66-72.
HE Xianpei. Study on humidity-sensitive material without heavy metal[J]. Guangdong Chemical Industry, 2016,43(17):66-72.
[11] WEI Z Q, ZHOU Z K, LI Q Y, et al. Flexible nanowire cluster as a wearable colorimetric humidity sensor[J]. Small, 2017.DOI: 10.10021smll201700109.
[12] XU W C, HU X Z, ZHUANG S D, et al. Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination[J]. Adv Energy Mater, 2018,8(14):1702884.
[13] LI X Q, LIN L, ZHU Y N, et al. Preparation of ultrafine fast-dissolving cholecalciferol-loaded poly (vinyl pyrrolidone) fiber mats via electro-spinning[J]. Polymer Composite, 2013,34(2):282-287.
[14] BAOOL S, IMRAN Z, QADIR M I, et al. Comparative analysis of Ti, Ni, and Au electrodes on characteristics of TiO2 nanofibers for humidity sensor application[J]. J Mater Sci Technol, 2013,29(5):411-414.
[15] KIM E, KIM S Y, JO G, et al. Colorimetric and resistive polymer electrolyte thin films for real-time humidity sensors[J]. Acs Appl Mater Inter, 2012,4(10):5179-5187.
[16] 李佩雯. NBT-BT6纳米纤维/介孔粉末相对湿度传感器的性能研究[D]. 湘潭:湘潭大学, 2016: 23-29.
LI Peiwen. The properties of humidity sensor based on(Na0.5Bi0.5)0.94TiO3-Ba0.06TiO3 nanofibers/ mesoporous powders[D]. Xiangtan:Xiangtan University, 2016: 23-29.
[17] 贺媛. BaTiO3纳米纤维相对湿度传感性能的研究[D]. 长春:吉林大学, 2011: 47-58.
HE Yuan. Study on humidity sensing properties of BaTiO3 nanofiber[D]. Changchun: Jilin University, 2011: 47-58.
[18] YOU M H, YAN X, ZHANG J, et al. Colorimetric humidity sensors based on electrospun polyamide/CoCl2 nanofibrous membranes[J]. Nanoscale Res Lett, 2017,12(1):360.
pmid: 28532125
[19] 戴克华. 氯化钴溶液变色原理的探究[J]. 化学教学, 2011(1):45-46.
DAI Kehua. Exploring the color change principle of cobalt chloride solution[J]. Education in Chemistry, 2011(1):45-46.
[1] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[2] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[3] WANG Liyuan, KANG Weimin, ZHUANG Xupin, JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[4] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[5] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[6] WANG Yang, CHENG Chunzu, JIANG Li′na, REN Yuanlin, GUO Yingbin. Preparation of durable flame retardant polyacrylonitrile fabrics using UV-induced photo-grafting polymerization combined with sol-gel coating [J]. Journal of Textile Research, 2020, 41(10): 107-115.
[7] DUAN Fangyan, WANG Wenyu, JIN Xin, NIU Jiarong, LIN Tong, ZHU Zhengtao. Research progress in formation of starch fibers and their drug-loaded controlled-release [J]. Journal of Textile Research, 2020, 41(10): 170-177.
[8] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[9] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[10] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[11] FANG Zhou, SONG Leilei, SUN Baojin, LI Wenxiao, ZHANG Chao, YAN Jun, CHEN Lei. Research progress in structure design of carbon nanofibers and their adsorption mechanism and applications toward sewage pollutants [J]. Journal of Textile Research, 2020, 41(08): 135-144.
[12] DUAN Hongmei, WANG Ximing, HUANG Zixin, GAO Jing, WANG Lu. Construction and drug release properties of fiber-based mesoporous SiO2 drug carrier [J]. Journal of Textile Research, 2020, 41(07): 15-22.
[13] WU Hong, LIU Chengkun, MAO Xue, YANG Zhi, CHEN Meiyu. Research progress in preparation and application of flexible zirconia nanofibers by electrospinning [J]. Journal of Textile Research, 2020, 41(07): 167-173.
[14] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[15] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!