Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 109-115.doi: 10.13475/j.fzxb.20200202607

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Halogen-free flame retardant finishing of ultra-high molecular weight polyethylene fiber

YANG Yaru1,2(), SHEN Xiaojun1,2, TANG Bolin1,2, NIU Mei3   

  1. 1. College of Materials and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
    2. Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, Zhejiang 314001, China
    3. College of Textile Engineering, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
  • Received:2020-02-13 Revised:2020-07-11 Online:2020-11-15 Published:2020-11-26

Abstract:

In order to improve the flame retardant properties of ultra-high molecular weight polyethylene (UHMWPE) fiber, carbon microspheres coated by magnesium hydroxide (MH-CMSs), which have both flame retardant and smoke suppression effect, were used as flame retardants, and tetrabutyl titanate and triphenyl phosphite were used as surfactants. The UHMWPE fibers were modified using the procedure of impurity removal—activation—padding—baking. The flame retardant properties, mechanical properties and thermal stability of these fibers were tested, and the flame retardant mechanism was studied. The research results show that this method is able to improve effectively the flame retardancy of UHMWPE fiber without harming its mechanical properties. Compared with pure UHMWPE fiber, the limited oxygen index of flame retardant UHMWPE (FR-UHMWPE) fiber is increased more than 36%, the peak heat release rate is reduced by up to 39.3%. In addition, smoke and molten droplets of the UHMWPE fibers are suppressed, and the fire risk is significantly reduced. The FR-UHMWPE fiber exhibits condensed phase flame retardant mechanism. The flame retardant finishing promotes the degradation of UHMWPE into carbon, which forms a dense and continuous char layer during the combustion process. This char layer can effectively prevent the transfer of heat and mass, and thus has a flame retardant effect.

Key words: high-performance fiber, ultra-high molecular weight polyethylene, flame retardant finishing, halogen-free flame retardant, flame retardant mechanism

CLC Number: 

  • TH145.23

Fig.1

TEM image (a) and FT-IR spectra (b) of MH-CMSs flame retardant"

Fig.2

TG curve of MH-CMSs flame retardant"

Fig.3

SEM images of UHMWPE fibers before and after flame retardant treatment. (a) Pure UHMWPE fiber;(b)1# FR-UHMWPE fiber; (c) 2# FR-UHMWPE fiber;(d)3# FR-UHMWPE fiber"

Fig.4

Infrared spectra of UHMWPE fibers before and after flame retardant treatment"

Tab.1

Burning performance of FR-UHMWPE fibers"

样品 质量
增加率/%
LOI值/
%
续燃时间/
s
融滴数
纯UHMWPE纤维 17.5 燃尽 16
1# FR-UHMWPE纤维 9.5 23.8 10 12
2# FR-UHMWPE纤维 15.6 24.6 6 5
3# FR-UHMWPE纤维 21.4 24.1 5 3

Fig.5

Heat release rate curves of FR-UHMWPE fibers"

Tab.2

Cone calorimeter test data of FR-UHMWPE fibers"

样品 TTI/s pk-HRR/
(kW·m-2)
THR/
(MJ·m2)
TSR/
m3
TTI/
pk-HRR
纯UHMWPE纤维 3 169.7 24.9 204.1 0.018
1#FR-UHMWPE纤维 13 168.3 23.2 110.8 0.077
2#FR-UHMWPE纤维 17 119.1 17.7 99.1 0.143
3#FR-UHMWPE纤维 15 102.9 19.4 127.4 0.146

Tab.3

Mechanical properties of FR-UHMWPE fibers"

样品 断裂强度/
(cN·dtex-1)
断裂强力/
N
断裂伸长率/
%
纯UHMWPE纤维 33.0 350 3.0
1# FR-UHMWPE纤维 34.1 355 2.5
2# FR-UHMWPE纤维 35.8 370 2.2
3# FR-UHMWPE纤维 38.5 383 2.1

Fig.6

TG curves of UHMWPE fiber and FR-UHMWPE fiber"

Fig.7

SEM images of char layers of UHMWPE fiber (a) and FR-UHMWPE fiber (b)"

[1] 徐海燕. 捻度对超高分子质量聚乙烯纱线可编织性的影响[J]. 纺织学报, 2013,34(11):44-48.
XU Haiyan. Effect of twist on the weavability of ultra-high molecular weight polyethylene yarns[J]. Journal of Textile Research, 2013,34(11):44-48.
[2] 王晓春, 张健飞, 张丽平, 等. 高疏水染料结构对超高分子量聚乙烯纤维染色性能的影响[J]. 纺织学报, 2020,41(3):78-83.
WANG Xiaochun, ZHANG Jianfei, ZHANG Liping, et al. Effect of highly hydrophobic dye structure on dyeing performance of ultra-high molecular weight polyethylene fibers[J]. Journal of Textile Research, 2020,41(3):78-83.
[3] 陈晓钢. 纺织基防弹防穿刺材料的研究回顾[J]. 纺织学报, 2019,40(6):159-165.
CHEN Xiaogang. Review of research on textile-based bulletproof and puncture-resistant materials[J]. Journal of Textile Research, 2019,40(6):159-165.
[4] 杜晗笑, 郑振荣, 曹森学, 等. 超疏水气凝胶涂层超高分子量聚乙烯织物的制备与表征[J]. 纺织学报, 2018,39(4):93-99.
DU Hanxiao, ZHENG Zhenrong, CAO Senxue, et al. Preparation and characterization of ultra-hydrophobic aerogel-coated UHMWPE fabrics[J]. Journal of Textile Research, 2018,39(4):93-99.
[5] 马文俊. 超高分子量聚乙烯(UHMWPE)纤维/织物表面改性及阻燃性能研究[D]. 北京:北京化工大学, 2015: 7-8.
MA Wenjun. Study on surface modification and flame retardancy of ultra high molecular weight polyethylene (UHMWPE) fibers/fabrics[D]. Beijing: Beijing University of Chemical Technology, 2015: 7-8.
[6] QIAO Xiuying, NA Mingyu, GAO Ping, et al. Halloysite nanotubes reinforced ultrahigh molecular weight polyethylene nanocomposite films with different filler concentration and modification[J]. Polymer Testing, 2017,57:133-140.
doi: 10.1016/j.polymertesting.2016.11.024
[7] 许海霞, 张振雷, 吴喜龙, 等. 一种超高分子量聚乙烯阻燃编织带及其制备方法: 2015105640371[P]. 2015-12-09.
XU Haixia, ZHANG Zhenlei, WU Xilong, et al. Ultra-high molecular weight polyethylene flame-retardant woven tape and preparation method thereof: 2015105640371[P]. 2015-12-09.
[8] 马文俊, 邱日祥, 张胜, 等. 超高分子质量聚乙烯纤维的浸轧阻燃整理[J]. 印染, 2015 (4):37-44.
MA Wenjun, QIU Rixiang, ZHANG Sheng, et al. Padded flame retardant finishing of ultra-high molecular weight polyethylene fibers[J]. China Dyeing & Finishing, 2015 (4):37-44.
[9] 郑振荣, 杜晗笑, 赵晓明, 等. 一种阻燃超高分子量聚乙烯织物及其制备方法: 2016106384644[P]. 2016-11-09
ZHENG Zhenrong, DU Hanxiao, ZHAO Xiaoming, et al. A flame-retardant ultra-high molecular weight polyethylene fabric and its preparation method: 2016106384644[P]. 2016-11-09
[10] 杜晗笑, 郑振荣, 曹森学, 等. 超疏水气凝胶涂层超高分子量聚乙烯织物的制备与表征[J]. 纺织学报, 2018,39(4):93-99.
DU Hanxiao, ZHENG Zhenrong, CAO Senxue, et al. Preparation and characterization of ultra-hydrophobic aerogel coated ultra-high molecular weight polyethylene fabrics[J]. Journal of Textile Research, 2018,39(4):93-99.
[11] 杜晗笑, 曹森学, 陈逢亮, 等. 超高分子量聚乙烯纤维阻燃性能的研究现状[J]. 天津纺织科技, 2016(3):37-39.
DU Hanxiao, CAO Senxue, CHEN Fengliang, et al. Research status of flame retardant properties of UHMWPE fibers[J]. Tianjin Textile Science and Technology, 2016(3):37-39.
[12] YANG Y, NIU M, LI J, et al. Preparation of carbon microspheres coated magnesium hydroxide and its application in polyethylene terephthalate as flame retardant[J]. Polymer Degradation and Stability, 2016,134:1-9.
doi: 10.1016/j.polymdegradstab.2016.09.019
[13] 徐晓楠. 新一代评估方法: 锥形量热仪(CONE)法在材料阻燃研究中的应用[J]. 中国安全科学学报, 2003,13(1):19-22.
XU Xiaonan. Application of a new generation of evaluation method-cone calorimeter (CONE) method in flame retardancy of materials[J]. Chinese Journal of Safety Science, 2003,13(1):19-22.
[14] WANG Zhi, NING Xiaoyao, ZHU Kang, et al. Evaluating the thermal failure risk of large-format lithium-ion batteries using a cone calorimeter[J]. Journal of Fire Sciences, 2019,37(1):81-95.
doi: 10.1177/0734904118816616
[15] ZHANG Xianshen, YAN Xiong, SHI Meiwu. The flame retardancy and pyrolysis mechanismof polyimide fibers investigated by cone calorimeter and pyrolysis-gas chromatography-mass spectrometry[J]. Journal of Industrial Textiles, 2018,48(2):465-481.
doi: 10.1177/1528083717732077
[16] WEI Ruichao, HUANG Shenshi, HUANG Que, et al. Experimental study on the fire characteristics of typical nitrocellulose mixtures using a cone calorimeter[J]. Journal of Thermal Analysis and Calorimetry, 2018,134:1471-1480.
doi: 10.1007/s10973-018-7410-9
[17] SHI Long, CHEW Michael, YIT Lin. Fire behaviors of polymers under autoignition conditions in a cone calorimeter[J]. Fire Safety Journal, 2013,61:243-253.
doi: 10.1016/j.firesaf.2013.09.021
[18] SHEN Ruiqing, HATANAKA Logan C, AHMED Lubna, et al. Cone calorimeter analysis of flame retardant poly(methyl methacrylate)-silica nanocomposites[J]. Journal of Thermal Analysis and Calorimetry, 2017,128(3):1443-1451.
doi: 10.1007/s10973-016-6070-x
[19] 黄锐, 杨立中, 方伟峰, 等. 火灾烟气危害性研究及其进展[J]. 中国工程科学, 2002,4(7):80-85.
HUANG Rui, YANG Lizhong, FANG Weifeng, et al. Research and progress of fire smoke hazards[J]. Chinese Engineering Science, 2002,4(7):80-85.
[20] LI Xin, OU Yuxiang, SHI Yanshan. Combustion behavior and thermal degradation properties of epoxy resins with a curing agent containing a caged bicyclic phosphate[J]. Polymer Degradation and Stability, 2002,77(3):383-390.
doi: 10.1016/S0141-3910(02)00075-7
[21] 漆东岳, 于宾, 赵晓明. 浸渍整理对PAN预氧化纤维/芳纶复合滤料性能影响研究[J]. 化工新型材料, 2019,47(1):122-125.
QI Dongyue, YU Bin, ZHAO Xiaoming. Effect of impregnation finishing on properties of PAN pre-oxidized fiber/aramid composite filter material[J]. Advanced Chemical Materials, 2019,47(1):122-125.
[22] KOROBEINICHEV O P, GONCHIKZHAPOV M B, PALETSKY A A, et al. Counterflow flames of ultrahigh-molecular-weight polyethylene with and without triphenylphosphate[J]. Combustion and Flame, 2016,169:261-271.
doi: 10.1016/j.combustflame.2016.04.019
[23] YU Bin, SHI Yongqian, YUAN Bihe, et al. Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocom-posites[J]. Journal of Materials Chemistry A, 2015,3(15):8034-8044.
doi: 10.1039/C4TA06613H
[24] CAI Jing, HENG Hhuiming, HU Xiaoping, et al. A facile method for the preparation of novel fire-retardant layered double hydroxide and its application as nanofiller in UP[J]. Polymer Degradation and Stability, 2016,126:47-57.
doi: 10.1016/j.polymdegradstab.2016.01.013
[1] LIU Shuqiang, WU Jie, WU Gaihong, YIN Xiaolong, LI Fu, ZHANG Man. Surface modification of basalt fiber using nano-SiO2 [J]. Journal of Textile Research, 2020, 41(12): 37-41.
[2] ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, LI Haiqiong. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber#br# [J]. Journal of Textile Research, 2020, 41(08): 9-14.
[3] ZHOU Qingqing, CHEN Jiayi, QI Zhenming, CHEN Weijian, SHAO Jianzhong. Preparation and characterization of flame retardant and antibacterial cotton fabric [J]. Journal of Textile Research, 2020, 41(05): 112-120.
[4] XU Ailing, WANG Chunmei. Ammonium modification of phytic acid and flame retardant finishing of Lyocell fabric [J]. Journal of Textile Research, 2020, 41(02): 83-88.
[5] WANG Fanghe, WANG Rui, WEI Lifei, WANG Zhaoying, ZHANG Anying, WANG Deyi. Preparation and properties of layer-by-layer self-assembled flame retardant modified polyester fabrics [J]. Journal of Textile Research, 2019, 40(11): 106-112.
[6] REN Yuanlin, JIANG Li'na, HUO Tongguo, TIAN Tian. Research progress on flame retardant modification of polyacrylonitrile fiber [J]. Journal of Textile Research, 2019, 40(08): 181-188.
[7] WU Liwei, WANG Wei, LIN Jiahorng, JIANG Qian. Preparation and mechanical properties of aramid/ ultra-high molecular weight polyethylene fabric reinforced polyurethane sandwich composite [J]. Journal of Textile Research, 2019, 40(07): 64-70.
[8] REN Yuanlin, JIANG Li'na, HUO Tongguo, TIAN Tian. Research progress of halogen-free flame retardancy and smoke suppression of polyacrylonitrile [J]. Journal of Textile Research, 2019, 40(07): 182-188.
[9] ZHANG Anying, WANG Zhaoying, WANG Rui, DONG Zhenfeng, WEI Lifei, WANG Deyi. Preparation and structural properties of flame retardant poly(L-lactic acid) and fiber thereof [J]. Journal of Textile Research, 2019, 40(04): 7-14.
[10] LI Qianglin, HUANG Fangqian, XIAO Xiuchan, QIU Cheng, WU Juzhen. Review on novel halogen-free polymer flame retardants [J]. Journal of Textile Research, 2019, 40(04): 177-184.
[11] GUAN Jinping, KUANG Xiaohui, TANG Rencheng, CHEN Guoqiang. Functional finishing of dopamine modified silk fabric with ferric chloride [J]. Journal of Textile Research, 2019, 40(02): 130-134.
[12] . Preparation and moisture permeability of ultra-high molecular weight polyethylene flexible stab-resistant composite with dendritic structure [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 63-68.
[13] . Preparation and characterization of super hydrophobic aerogel coated ultra-high molecular weight polyethylene fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 93-99.
[14] . Application of TiO2-SnO2 composite sol for wool flame retardant finishing [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 95-100.
[15] . Influence of flame retardant finishing with silicon-phosphorus hybridization on the structure and thermal stability of wool fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 101-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!