Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (10): 7-13.doi: 10.13475/j.fzxb.20200202707

• Fiber Materials • Previous Articles     Next Articles

Hydrogen bonding mechanism and properties of polyvinyl alcohol/krill protein fibers

GUAN Fucheng, GUO Jing, LÜ Lihua(), TAN Qian, SONG Jingxing, ZHANG Xin   

  1. College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
  • Received:2020-02-13 Revised:2020-07-17 Online:2020-10-15 Published:2020-10-27
  • Contact: Lü Lihua E-mail:lvlh@dlpu.edu.cn

Abstract:

To solve the difficult thermoplastic processing and single function of polyvinyl alcohol(PVA), krill protein(AKP) and water were used as plasticizers to prepare PVA/AKP fibers by melt spinning. The hydrogen bonding in PVA/AKP fiber was characterized by infrared spectrometer, and the mechanism of hydrogen bonding was analyzed. Additionally, the crystallinity, morphology, thermal properties and mechanical properties of PVA/AKP fibers were characterized by X-ray diffractometer, scanning electron microscope, differential scanning calorimeter and single fiber strength tester, respectively. The results show that with the increase of AKP mass fraction, the content of intramolecular hydrogen bond and crystallinity of PVA/AKP fibers firstly increases and then decreases. When the mass fraction of AKP is 2%, the content of intramolecular hydrogen bond in PVA/AKP fibers reaches the maximum value (85.37%), and the crystallinity also reaches the maximum value (48%), and the fiber breakage strength reaches a maximum of 2.15 cN/dtex. AKP is helpful to improve the surface smoothness of the fiber, the fiber cross section presents regular round. Additionally, PVA/AKP fibers are more responsive to alkaline solutions, and the water absorption rate of the fiber is a constant of 36% after 2 h.

Key words: polyvinyl alcohol/krill protein fiber, melt spinning, hydrogen bond action mechanism, crystallinity

CLC Number: 

  • TS151

Fig.1

Schematic diagram for PVA, and PVA/AKP Spinning process"

Fig.2

Infrared spectra of AKP,PVA,PVA/AKP(a)and PVA/AKP with different mass fraction of AKP(b)"

Fig.3

Hydrogen bond mechanism of PVA/AKP fibers"

Fig.4

Infrared spectra of PVA/AKP fibers with different AKP contents by Gaussian fitting"

Tab.1

Fitting results of various kinds of hydrogen bond"

AKP质
量分数/%
氢键
类型
氢键表
达式
波数/
cm-1
平均峰
面积
相对强
度/%
自由羟基 —OH 3 575 2.17 8.32
1 分子内氢键 OH…OH 3 428 28.65 75.30
分子间氢键 OH…N 3 126 6.23 16.38
自由羟基 —OH 3 575 0.55 1.23
2 分子内氢键 OH…OH 3 428 37.61 85.37
分子间氢键 OH…N 3 126 5.90 12.39
自由羟基 —OH 3 575 10.96 26.92
3 分子内氢键 OH…OH 3 428 24.76 60.82
分子间氢键 OH…N 3 126 4.99 12.25
自由羟基 —OH 3 575 10.58 30.93
4 分子内氢键 OH…OH 3 428 26.14 58.80
分子间氢键 OH…N 3 126 5.53 10.27

Fig.5

XRD curves of AKP, PVA and PVA/AKP(a)and PVA/AKP with different mass fraction of AKP(b)"

Fig.6

Breaking strength of PVA/AKP fibers with different mass fraction of AKP"

Fig.7

DSC curves of PVA/AKP fibers with different mass fraction of AKP"

Fig.8

Surface SEM images of PVA/AKP fibers with different mass fraction of AKP(×1 000)"

Fig.9

Surface forming mechanism of PVA/AKP fibers"

Fig.10

Cross-section SEM images of PVA/AKP fibers with different mass fraction of AKP(×200)"

Fig.11

Swelling of PVA/AKP fibers at different pH value"

Fig.12

Water absorption of PVA/AKP fibers with different time"

[1] TIAN H F, YAN J, RAJULU A V, et al. Fabrication and properties of polyvinyl alcohol/starch blend films: effect of composition and humidity[J]. International Journal of Biological Macromolecules, 2017,96:518-523.
doi: 10.1016/j.ijbiomac.2016.12.067 pmid: 28034827
[2] 刘鹏, 李东立, 许文才, 等. PVA可生物降解材料研究进展[J]. 北京印刷学院学报, 2014(2):22-26.
LIU Peng, LI Dongli, XU Wencai, et al. Research progress in polyvinyl alcohol biodegradable material[J]. Journal of Beijing Institute of Graphic Communication, 2014(2):22-26.
[3] CRISTINA D N, MIHAI P, RALUCA M A, et al. Induced birefringence of rubbed and stretched polyvinyl alcohol foils as alignment layers for nematic mole-cules[J]. Polymers for Advanced Technologies, 2019,30(8):2143-2152.
doi: 10.1002/pat.v30.8
[4] YANG Ningning, QI Ping, REN Jing, et al. Polyvinyl alcohol/silk fibroin/borax hydrogel ionotronics: a highly stretchable, self-healable, and biocompatible sensing platform[J]. ACS Applied Materials & Interfaces, 2019,26(11):23632-23638.
[5] KUMAR Anuj, HAN Sungsoo. PVA-based hydrogels for tissue engineering:a review[J]. International Journal of Polymeric Materials & Polymeric Biomaterials, 2016,66(4):159-182.
doi: 10.1080/00914037.2016.1190930
[6] LU Hongwei, ZOU Liming, XU Yongjing, et al. Preparation and study of poly vinyl alcohol/hyperbranched polylysine fluorescence fibers via wet spinning[J]. Materials Research Express, 2018. DOI: org/ 10.1088/2053-1591.
doi: 10.1088/2053-1591/3/9/094001 pmid: 32391160
[7] 赵寰. 聚乙烯醇纤维[M]. 北京: 化学工业出版社, 2014: 109-110.
ZHAO Huan. Polyvinyl alcohol fiber [M]. Beijing: Chemical Industry Press, 2014: 109-110.
[8] ZHU Yin, WU Chengxun, ZHANG Youwei. Study on the chain entanglement of polyvinyl alcohol fiber during the dry-jet wet spinning process[J]. Fibers and Polymers, 2015,16:345-353.
doi: 10.1007/s12221-015-0345-x
[9] WU Qian, CHEN Ning, WANG Qi. Crystallization behavior of melt-spun poly(vinyl alcohol)fibers during drawing process[J]. Journal of Polymer Research, 2010,17(6):902-909.
doi: 10.1007/s10965-009-9381-9
[10] 王建铨, 吴津田, 刘鹏清, 等. 聚乙烯醇水溶纤维干法纺丝成型模拟[J]. 纺织学报, 2013,34(2):22-27.
WANG Jianquan, WU Jintian, LIU Pengqing, et al. Simulation of dry spinning of PVA soluble fiber[J]. Journal of Textile Research, 2013,34(2):22-27.
[11] 李莉. 熔法纺高强高模聚乙烯醇纤维结构与性能的研究[D]. 成都:四川大学, 2006: 42-46.
LI Li. Study on structure and properties of high strength and modulus polyvinyl alcohol fiber by melt spi-nning[D]. Chengdu: Sichuan University, 2006: 42-46.
[12] 王茹, 王珙, 李莉, 等. 改性聚乙烯醇的热性能[J]. 塑料工业, 2002,30(1):32-34.
WANG Ru, WANG Gong, LI Li, et al. Thermal properties of modified polyvinyl alcohol[J]. Plastics Industry, 2002,30(1):32-34.
[13] 肖长发. 高强度聚乙烯醇纤维结构与性能研究[J]. 高科技纤维与应用, 2005,30(2):11-17.
XIAO Changfa. Study on the structure and properties of high strength polyvinyl alcohol fibers[J]. High Technology Fibers and Applications, 2005,30(2):11-17.
[14] CHEN Xunjun, WU Shufang, YI Minghao, et al. Preparation and physicochemical properties of blend films of feather keratin and poly(vinyl alcohol) compa-tibilized by tris(hydroxymethyl)aminomthane[J]. Polymers, 2018,10(10):1054.
doi: 10.3390/polym10101054
[15] 何明, 窦瑶, 陈曼, 等. 羽毛角蛋白/PVA复合纳米纤维膜的制备及表征[J]. 材料导报, 2018,32(2):198-202.
HE Ming, DOU Yao, CHEN Man, et al. Preparation and characterization of feather keratin/PVA composite nanofiber membrane[J]. Materials Review, 2018,32(2):198-202.
[16] 王宗乾, 杨海伟, 汤立洋. 丝素蛋白/聚乙烯醇复合膜的制备及其表征[J]. 纺织学报, 2018,39(11):14-19,26.
WANG Zongqian, YANG Haiwei, TANG Liyang, et al. Preparation and characterization of silk fibroin/polyvinyl alcohol composite membrane[J]. Journal of Textile Research, 2018,39(11):14-19,26.
[17] DOU Yao, ZHANG Buning, HE Ming, et al. Preparation and physicochemical properties of dialdehyde starch crosslinked feather keratin/PVA composite films[J]. Journal of Macromolecular Science:Part A:Pure and Applied Chemistry, 2014,51(2):1009-1015.
doi: 10.1080/10601325.2014.967108
[18] 陈曼, 何明, 郭妍婷, 等. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 材料导报, 2018,32(8):1218-1223.
CHEN Man, HE Ming, GUO Yanting, et al. Crosslinking modification and characterization of the electrospun feather keratin/poly(vinyl alcohol)/poly(ethylene oxide) nanofibrous membrane[J]. Materials Review, 2018,32(8):1218-1223.
[19] MAFTOONAZAD Neda, SHAHAMIRIAN Maryam, JOHN Dalia, et al. Development and evaluation of antibacterial electrospun pea protein isolate-polyvinyl alcohol nanocomposite mats incorporated with cinnamaldehyde[J]. Materials Science and Engineering C, 2019,94(1):393-402.
doi: 10.1016/j.msec.2018.09.033
[20] WANG Yaochao, WANG Ruo, CHANG Yaoguang, et al. Preparation and thermo-reversible gelling properties of protein isolate from defatted Antarctic krill (Eup-hausia superba) byproducts[J]. Food Chemistry, 2015: 188:170-176.
doi: 10.1016/j.foodchem.2015.04.126 pmid: 26041179
[21] 郭静, 李学才, 于春芳, 等. 南极磷虾蛋白的提取及其复合纤维的性能[J]. 大连工业大学学报, 2014,33(4):270-273.
GUO Jing, LI Xuecai, YU Chunfang, et al. Extraction of antarctic krill protein and properties of its composite fibers[J]. Journal of Dalian Polytechnic University, 2014,33(4):270-273.
[22] YANG Lijun, GUO Jing, YU Yue, et al. Hydrogen bonds of sodium alginate/antarctic krill protein composite material[J]. Carbohydrate Polymers, 2016,142:275-281.
doi: 10.1016/j.carbpol.2016.01.050 pmid: 26917400
[23] HERMAN S M, ALEXANDRA M, ORÉFICE R L. Protein immobilization in PVA hydrogel: a synchrotron SAXS and FTIR study[J]. Solid State Phenomena, 2007, 121-123:1355-1358.
doi: 10.4028/www.scientific.net/SSP.121-123
[24] 吴静, 郭静, 张森, 等. 盐浓度与海藻酸钠/磷虾蛋白复合体系性能的相关性[J]. 高等学校化学学报, 2017,38(9):1701-1708.
WU Jing, GUO Jing, ZHANG Sen, et al. Correlation between salt concentration and properties of sodium alginate/krill protein complex system[J]. Chinese Journal of Chemistry, 2017,38(9):1701-1708.
[25] WANG Ru, WANG Qi, LI Li. Evaporation behaviour of water and its plasticizing effect in modified poly (vinyl alcohol) systems[J]. Polymer International, 2003,52:1820-1826.
doi: 10.1002/pi.1385
[26] 徐斗峰, 黄长根, 唐文君, 等. 水溶性PVA纤维的溶解过程及其影响因素分析[J]. 印染助剂, 2011,28(6):24-27.
XU Doufeng, HUANG Changgen, TANG Wenjun, et al. Study on the dissolution and influencing factors of water-soluble PVA fiber[J]. Textile Auxiliaries, 2011,28(6):24-27.
[1] YANG Fan, LIU Junhua, BIAN Angting, WANG Yanping, QIAN Qiyuan, NI Jianhua, XIA Yumin, HE Yong, WANG Yimin. Influence of heat treatment on structure and properties of thermotropic liquid crystalline polyarylate fiber [J]. Journal of Textile Research, 2019, 40(11): 9-12.
[2] ZHANG Tengfei, SHI Ludan, HU Hongmei, WANG Yu, WANG Xueli, YU Jianyong. Synthesis and characterization of bio-based polyamide 56 oligomer modified polyester [J]. Journal of Textile Research, 2019, 40(06): 1-7.
[3] MO Dajie, LI Xuming, XU Zenghui. Preparation and properties of poly(3-hydroxybutyrate-co-3-hydroxyl valerate)/polylactic acid flame retardant fibersMO [J]. Journal of Textile Research, 2019, 40(05): 12-17.
[4] LI Mengzhen, ZHANG Bin, YU Chongwen. Softness treatment of ramie fibers by N-methyl-2-pyrrolidone [J]. Journal of Textile Research, 2019, 40(04): 72-76.
[5] LI Xiaochuan, QU Qianqian, LI Xuming. Preparation and properties of polylactic acid/polypropylene blend fiber by melt spinning [J]. Journal of Textile Research, 2019, 40(03): 8-12.
[6] . Preparation and properties of high strength and high modulus polyoxymethylene fibers [J]. Journal of Textile Research, 2018, 39(10): 1-6.
[7] . Preparation and characterization of sheath-core energy storage and thermo-regulated composite fibers of polyamide 6 [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 1-8.
[8] . Measurement of crystallinity and crystal orientation of polyester industrial yarns by 2-D X-ray diffraction [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 19-25.
[9] . Preparation of oriented nanowires by melt differential electrospinning [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 8-12.
[10] . Influence of ultrasonic treatment on cellulase hydrolysis of bamboo powder [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 83-87.
[11] . Preparation and characterization of rice straw cellulose nanowhiskers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 1-7.
[12] . Structure and property of methanol protein modified viscose fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 12-15.
[13] . Structure and performance of corn bracts and its fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(07): 7-12.
[14] . Preparation and characterization of microcrystalline cellulose from Salix psammophila bark [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(06): 7-12.
[15] . Structure and properties of colored tussah silk fibers [J]. Journal of Textile Research, 2015, 36(04): 16-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!