Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (08): 152-157.doi: 10.13475/j.fzxb.20200203207

• Column: Medical Protective Textiles • Previous Articles     Next Articles

Particle size conversion for mask filter efficiency test and comparability of different standards

YANG Xiaobing1,2(), CHENG Jun3, ZHANG Shouxin1,2, YAO Hong4, LU Lin1,2, DING Songtao1,2   

  1. 1. State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Military Science Academy, Beijing 100191, China
    2. Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, Beijing 100191, China
    3. Sinosteel Wuhan Safety & Environment Protection Research Institute Co., Ltd., Wuhan, Hubei 430081, China
    4. 3M China Company, Beijing 100176, China
  • Received:2020-02-17 Revised:2020-05-07 Online:2020-08-15 Published:2020-08-21

Abstract:

To clarify the related scientific concept of particle size used in testing mask filter efficiency, this paper systematically introduced the basic concepts and descriptive methods of particle size and particle size distribution for filter efficiency test in the Chinese national standard GB 2626—2006 "Respiratory protective equipment-non-owered air-purifying particle respirator". On the basis of reviewing the concepts of respirable dust and mass median aerodynamic diameter(MMAD), emphasis was laid on the calculation method for converting the count median diameter (CMD) into MMAD, which proved that the CMD provided in GB 2626—2006 meets the requirement of MMAD 0.3 μm, the most penetrating particle size, used for the filter efficiency test. Based on the conversion method, the dust size with MMAD higher than 7 μm used in AQ 1114—2014 "Self-inhalation filter type dust respirator for coal mines" for filter efficiency test was discussed. The particle filter efficiency of typical filtration media used in masks was tested using the 0.3 μm particles. It provided professional guidance for the correct evaluation of domestic and foreign standards for particle masks.

Key words: mask, particle protection, particle size distribution, mass median aerodynamic diameter, most penetrating particle size, filter efficiency, standard

CLC Number: 

  • C976.2

Fig.1

Typical particle size distribution"

Fig.2

Particle size distribution after logarithm"

Fig.3

Relationship between physical diameter of irregular particles with ds and da"

Tab.1

Statistics of particle specification used for particle filter efficiency test in worldwide standards"

标准名称 标准国别
与地区
测试用颗粒物特性
ISO 16900—3:2012《呼吸保护装置 试验方法和试验设备 第3部分:粒子滤波渗透的测定》 国际 NaCl颗粒:CMD为(0.06~0.10) μm,GSD为1.4~1.8;DOP颗粒:CMD为(0.16~0.21) μm,GSD为1.4~1.8。
EN 149:2001+A1 2009《呼吸防护装置 防护颗粒的过滤半面罩 要求、测试、标记》 欧盟
(34个国家)
NaCl颗粒:MMD为0.6 μm,尺寸分布为(0.045~1.2) μm;石腊颗粒:ds为0.4 μm,尺寸分布为(0.045~2.0) μm。
42 CFR 84《美国呼吸护具标准》 美国 同GB 2626—2006
AS/NZS 1716: 2012《呼吸保护装置》 澳大利亚/
新西兰
NaCl颗粒:MMD为(0.3~0.6) μm,尺寸分布为(0.02~2.0) μm。

Fig.4

Dust particle size distribution diagram used by AQ 1114—2014 to test filter efficiency of dust mask"

Fig.5

Relation between filter efficiency and fiber diameter"

Tab.2

Effects of different layers filtering materials on filter efficiency and air resistance"

样品层数 过滤效率/% 阻力/Pa
1 42.800 86
2 67.200 164
3 81.200 241
4 89.400 317
5 94.460 404
6 96.610 474
7 98.070 555
8 98.920 624
9 99.360 697
10 99.643 775
11 99.803 852
12 99.888 924
13 99.935 991
14 99.962 1 061
15 99.979 1 140
16 99.988 1 203
[1] 程钧, 杨小兵, 姚红, 等. GB 2626—2006标准修订系列研究第1部分:防颗粒物呼吸器用户问卷调查结果分析及其对标准修订的影响[J]. 中国标准化, 2018(14):248-252.
CHENG Jun, YANG Xiaobing, YAO Hong, et al. Studies upon GB 2626-2006 upgrading: part 1: particle respirator user survey result analysis and its impact to the future standard[J]. China Standardization, 2018(14):248-252.
[2] 中华人民共和国国家卫生健康委. 新型冠状病毒感染的肺炎诊疗方案(试行第五版)[EB/OL]. (2020-02-05)[2020-02-06]. http://www.gov.cn/zhengce/zhengceku/2020-02/05/content_5474791.htm.
National Health Commission of the People's Republic of China. New novel coronavirus pneumonia diagnosis and treatment plan (trial version fifth)[EB/OL]. (2020-02-05)[2020-02-06]. http://www.gov.cn/zhengce/zhengceku/2020-02/05/content_5474791.htm.
[3] STEVENS G A, MOYER E S. "Worst case" aerosol testing parameters: I: sodium chloride and dioctyl phthalate aerosol filter efficiency as a function of particle size and flow rate[J]. American Industrial Hygiene Association Journal, 1989,50(5):257-264.
doi: 10.1080/15298668991374615 pmid: 2729101
[4] WILLIAM C H. Aerosol technology, properties, behavior, and measurement of airborne particles[M]. 2nd ed. New York: Wiley-Interscience Press, 1999: 78, 98.
[5] LEE K W LIU B Y H. On the minimum efficiency and the most penetrating particle size for fibrous filters[J]. Journal of the Air Pollution Control Association, 1980,30(4):377-381.
doi: 10.1080/00022470.1980.10464592
[6] HINDS W C, MACHER J M, FIRST M W. Size distribution of aerosols produced by the laskin aerosol generator using substitute materials for DOP[J]. American Industrial Hygiene Association Journal, 1983,44(7):495-500.
[7] 吕爱民. 防尘口罩的问题及整改措施[J]. 劳动保护, 2011(5):86-87.
LV Aimin. Problems of dust masks and correction measures[J]. Labor Protection, 2011 (5):86-87.
[8] 杨文芬, 宫国卓, 吕爱民, 等. 解析《煤矿用自吸过滤式防尘口罩》标准[J]. 现代职业安全, 2015 (1):107-109.
YANG Wenfen, GONG Guozhuo, LV Aimin, et al. Analysis of the standard of "self-inhalation filter type dust respirator for coal mine"[J]. Modern Occupational Safety, 2015(1):107-109.
[9] 丁松涛, 姚红, 房鹤. 解析霾与公众防护[J]. 中国个体防护装备, 2015(2):21-25.
DING Songtao, YAO Hong, FANG He. Haze and general public's protection[J]. China Personal Protective Equipment, 2015(2):21-25.
[10] 马子燕. 显微镜法测定粉尘分散度存在的问题[J]. 工业安全与防尘, 1999,10:43-44.
MA Ziyan. The problem of the measurement method of the dust decentralization by the microscope in the application[J]. Industrial Safety and Dust Control, 1999,10:43-44.
[11] DENEE P B. Mine dust characterization using the scanning electron microscope[J]. American Industrial Hygiene Association Journal, 1972,33(10):654-660.
doi: 10.1080/0002889728506723 pmid: 4660795
[12] 姚红, 丁松涛. 探讨高浓度粉尘环境下的呼吸防护[C]// 中国职业安全健康协会. 中国职业安全健康协会2011年学术年会论文集, 北京: 煤炭工业出版社, 2011: 429-434.
YAO Hong, DING Songtao. The respiratory protection in high concentration dust[C]// China Occupational Safety and Health Association. 2011 Annual Conference of COSHA. Beijing: China Coal Industry Publishing House, 2011: 429-434.
[13] 张星, 刘金鑫, 张海峰, 等. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020,41(3):168-174.
ZHANG Xing, LIU Jinxin, ZHANG Haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020,41(3):168-174.
[14] 周川, 杨小兵, 颜晓珊, 等. 空气过滤用复合纳米纤维材料研究进展[J]. 功能材料, 2018,49(5):5056-5060, 5069.
ZHOU Chuan, YANG Xiaobing, YAN Xiaoshan, et al. Progress on the composite nanofiber materials used for air filtration[J]. Journal of Functional Materials, 2018,49(5):5056-5060, 5069.
[15] TSAI P Y. Theoretical and experimental investigation on the relationship between the nonwoven structure and the web properties[J]. International Nonwovens Journal, 2002(4):33-36.
[1] ZHAO Boyu, LIANG Xinhua, CONG Honglian. Structural modeling and process practice of three-dimensional fully fashioned face masks woven by computerized flat knitting machine [J]. Journal of Textile Research, 2020, 41(12): 59-65.
[2] MIN Xiaobao, PAN Zhijuan. Comparison and analysis on structure and function of medical protective clothing [J]. Journal of Textile Research, 2020, 41(08): 172-178.
[3] ZHOU Huilin, YANG Weimin, LI Haoyi. Research progress of filtering material for medical mask [J]. Journal of Textile Research, 2020, 41(08): 158-165.
[4] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks [J]. Journal of Textile Research, 2020, 41(03): 168-174.
[5] YANG Xiaobing, YANG Guang, TAN Wenli, GUO Jingwen, DING Songtao, ZHONG Jinyi. Impact of latest development trend of international standardization on GB 24539—2009 for chemical protective clothing [J]. Journal of Textile Research, 2019, 40(06): 165-170.
[6] ZHOU Yaqin, WANG Junliang, BAO Jinsong, ZHANG Jie. Research and implementation of standard system architecture of textile intelligent manufacturing [J]. Journal of Textile Research, 2019, 40(04): 145-151.
[7] WANG Zongqian, WANG Dengfeng, ZHOU Hang, LI Jun. Effect of ultrasonic assistance on morphology of silk fibroin microspheres prepared by emulsion cross-linking process [J]. Journal of Textile Research, 2019, 40(02): 119-124.
[8] . Action coding for operation process of garment template [J]. Journal of Textile Research, 2018, 39(09): 109-114.
[9] . Interpretation of new ISO standard about detection of banned azo colorants [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 95-99.
[10] . Properties of pre-oxidized polyacrylonitrile / aramid fiber needled filters [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 61-66.
[11] . Intelligent manufacturing and standard about interoperability verificationof knitting equipment [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 172-177.
[12] . Situation analysis of evaluation standard for measuring shielding effectiveness of anti-electromagnetic radiation textiles [J]. Journal of Textile Research, 2016, 37(2): 170-176.
[13] . Prediction of garment standard time based on processes similarity [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 114-119.
[14] . Evaluation standards and program implementation on damage status of carbon fiber warp weaving [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 134-139.
[15] . Preparation and application of high stability sucrose polyester emulsion [J]. Journal of Textile Research, 2016, 37(05): 97-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!