Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (12): 31-36.doi: 10.13475/j.fzxb.20200203306

• Fiber Materials • Previous Articles     Next Articles

Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care

WANG Ximing, CHENG Feng, GAO Jing(), WANG Lu   

  1. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2020-02-17 Revised:2020-04-28 Online:2020-12-15 Published:2020-12-23
  • Contact: GAO Jing E-mail:gao2001jing@dhu.edu.cn

Abstract:

In order to improve the structural stability and water resistance of chitosan-based nanofiber membranes, the glutaraldehyde cross-linking modification to the chitosan/polyoxyethylene nanofiber membranes prepared by electrospinning was carried out. Then,the nanofiber membranes of different crossing-linking time were immersed into phosphate buffer saline simulating body fluid environment in order to characterize its microstructure, chemical and crystalline structure, and the water resistance and mechanical properties was measured. The experimental results show that after glutaraldehyde cross-linking modification, the stability of the fiber structure is improved after soaking in the buffer for 24 h,and the water absorption ratio of nanofiber membranes in phosphate buffer saline gradually increases with the cross-linking time and the dissolution ratio gradually decreases, revealing that the cross-linking treatment has a positive effect on the structural stability and water resistance of the fiber membrane. It is also found that the cross-linking modification causes a strong interaction between the molecules, and changes the inherent crystalline structure of chitosan macromolecules, resulting in an increase in the initial modulus of the fiber membrane. In addition, the research shows that the mechanical strength of the nanofiber membranes increases first and then decreases with the extension of the cross-linking time. The cross-linking treatment increases both the strength and brittleness of the fiber membranes.

Key words: chitosan, polyoxyethylene, electrospinning, cross-linking modification, wound care, mechanical property

CLC Number: 

  • TS171

Fig.1

SEM images of nanofiber membranes under different cross-linking time before and after soaked in PBS for 24 h(×5 000)"

Fig.2

FT-IR spectra analysis on nanofiber membranes and CS"

Fig.3

X-ray diffraction spectra of nanofiber membranes and CS"

Fig.4

Water absorption(a) and dissolution(b) ratio of nanofiber membranes under different cross-linking time after soaked in PBS for 24 h"

Tab.1

Mechanical property of nanofiber membranes under different cross-linking time"

交联时间/h 断裂强度/MPa 断裂伸长率/%
0 2.42±0.75 20.12±14.46
4 2.59±0.55 3.62±0.54
8 3.85±0.59 4.62±1.24
12 0.99±0.33 1.12±0.29
24 1.96±0.64 4.12±0.53
[1] YOUNES I, RINAUDO M. Chitin and chitosan preparation from marine sources: structure, properties and applications[J]. Marine Drugs, 2015,13(3):1133-1174.
pmid: 25738328
[2] AHMED T A, ALJAEID B M. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery[J]. Drug Design Development and Therapy, 2016,10:483-507.
[3] LOGITHKUMAR R, KESHAVNARAYAN A, DHIVYA S, et al. A review of chitosan and its derivatives in bone tissue engineering[J]. Carbohydrate Polymers, 2016,151:172-188.
doi: 10.1016/j.carbpol.2016.05.049 pmid: 27474556
[4] JAYAKUMAR R, PRABAHARAN M, SUDHEESH K P T, et al. Biomaterials based on chitin and chitosan in wound dressing applications[J]. Biotechnology Advances, 2011,29(3):322-337.
doi: 10.1016/j.biotechadv.2011.01.005 pmid: 21262336
[5] KHORSHIDI S, SOLOUK A, MIRZADEH H, et al. A review of key challenges of electrospun scaffolds for tissue-engineering applications[J]. Journal of Tissue Engineering and Regenerative Medicine, 2016,10(9):715-738.
doi: 10.1002/term.1978 pmid: 25619820
[6] 付译鋆, 安琪, 张伟, 等. 壳聚糖基纳米纤维载药体系及其缓释行为[J]. 纺织学报, 2018,39(12):7-12.
FU Yijun, AN Qi, ZHANG Wei, et al. Chitosan based nanofiber drug loaded system and its sustained release behavior[J]. Journal of Textile Research, 2018,39(12):7-12.
[7] ADELI H, KHORASANI M T, PARVAZINIA M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay[J]. International Journal of Biological Macromolecules, 2019,122:238-254.
pmid: 30342125
[8] CHEN Q C, WU J, LIU Y, et al. Electrospun chitosan/PVA/bioglass Nanofibrous membrane with spatially designed structure for accelerating chronic wound healing[J]. Materials Science & Engineering C: Materials for Biological Applications, 2019,105:110083.
doi: 10.1016/j.msec.2019.110083 pmid: 31546466
[9] REN X X, XU Z P, WANG L B, et al. Silk fibroin/chitosan/halloysite composite medical dressing with antibacterial and rapid haemostatic properties[J]. Materials Research Express, 2019.DOI: 10.1088/2053-1591/ab5533.
doi: 10.1088/2053-1591/3/9/094001 pmid: 32391160
[10] OHKAWA K, MINATO K I, KUMAGAI G, et al. Chitosan nanofiber[J]. Biomacromolecules, 2006,7(11):3291-3294.
pmid: 17096563
[11] BÖSIGER P, RICHARD I M T, GAT L L, et al. Application of response surface methodology to tailor the surface chemistry of electrospun chitosan-poly(ethylene oxide) fibers[J]. Carbohydrate Polymers, 2018,186:122-131.
doi: 10.1016/j.carbpol.2018.01.038 pmid: 29455969
[12] KOOSHA M, MIRZADEH H. Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers[J]. Journal of Biomedical Materials Research: Part A, 2015,103(9):3081-3093.
doi: 10.1002/jbm.a.v103.9
[13] GENG X, KWON O H, JANG J. Electrospinning of chitosan dissolved in concentrated acetic acid solu-tion[J]. Biomaterials, 2005,26(27):5427-5432.
pmid: 15860199
[14] KIANFAR P, VITALE A, DALLE V S, et al. Photo-crosslinking of chitosan/poly(ethylene oxide)electrospun nanofibers[J]. Carbohydrate Polymers, 2019,217:144-151.
doi: 10.1016/j.carbpol.2019.04.062 pmid: 31079670
[15] 王晓丽. 壳聚糖基载银电纺纳米纤维膜的制备及性能研究[D]. 上海:东华大学, 2014: 36-40.
WANG Xiaoli. Study on preparation and properties of sliver loaded chitosan based electrospun nanofiber membrane[D]. Shanghai: Donghua University, 2014: 36-40.
[16] KRIEGEL C, KIT K M, MCCLEMENTS D J, et al. Electrospinning of chitosan-poly(ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions[J]. Polymer, 2009,50(1):189-200.
doi: 10.1016/j.polymer.2008.09.041
[17] MEHDI P, MARIE-CLAUDE H, ABDELLAH A. A fundamental study of chitosan/PEO electrospinning[J]. Polymer, 2011,52(21):4913-4824.
[18] 许乐, 杨庆, 黄丽媛, 等. 壳聚糖/聚氧化乙烯静电纺丝工艺研究[J]. 合成纤维工业, 2011,34(4):28-30.
XU Le, YANG Qing, HUANG Liyuan, et al. Study on chitosan/polyethylene oxide electrospinning process[J]. China Synthetic Fiber Industry, 2011,34(4):28-30.
[19] FENG C, JING G, LU W, et al. Composite chitosan/poly(ethylene oxide) electrospun nanofibrous mats as novel wound dressing matrixes for the controlled release of drugs[J]. Journal of Applied Polymer Science, 2015. DOI: 10.1002/app.42060.
doi: 10.1002/app.40297 pmid: 25382868
[20] ZHANG Y M, JIANG J M, CHEN Y M. Synjournal and antimicrobial activity of polymeric guanidine and biguanidine salts[J]. Polymer, 1999,40(22):6189-6198.
doi: 10.1016/S0032-3861(98)00828-3
[21] 程凤. 载药抗菌创伤敷料的制备与性能研究[D]. 上海:东华大学, 2015: 29-39.
CHENG Feng. Study on preparation and properties ofantimicrobial drug loaded wound dressing[D]. Shanghai: Donghua University, 2015: 29-39.
[1] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[2] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[3] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[4] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[5] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[6] LIU Shuqiang, WU Jie, WU Gaihong, YIN Xiaolong, LI Fu, ZHANG Man. Surface modification of basalt fiber using nano-SiO2 [J]. Journal of Textile Research, 2020, 41(12): 37-41.
[7] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride/FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[8] WANG Liyuan, KANG Weimin, ZHUANG Xupin, JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[9] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[10] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[11] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[12] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[13] ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, LI Haiqiong. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber#br# [J]. Journal of Textile Research, 2020, 41(08): 9-14.
[14] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[15] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!