Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (12): 66-72.doi: 10.13475/j.fzxb.20200204407

• Textile Engineering • Previous Articles     Next Articles

Abrasion resistance of suture at anchor eyelet for tendon-bone repair and its influencing factors

ZHANG Qian1,2, MAO Jifu1,2,3, LÜ Luyao1,2, XU Zhongmian4, WANG Lu1,2,3()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Key Laboratory of Biomedical Textile Materials and Technology in Textile Industry, Donghua University, Shanghai 201620, China
    4. Zhejiang Guangci Medical Equipment Co., Ltd., Ningbo, Zhejiang 315000, China
  • Received:2020-02-24 Revised:2020-07-17 Online:2020-12-15 Published:2020-12-23
  • Contact: WANG Lu E-mail:wanglu@dhu.edu.cn

Abstract:

Suture anchors often fail in service due to the abrasion and fracture of suture at the interface between suture and anchor eyelet in clinic. However, the quantitative evaluation of the abrasion resistance of suture is still unascertained owing to the absence of an measurement technique. A abrasion testing device was constructed, and several commonly used sutures and anchors were selected for this experiment. The breaking force and abrasion resistance of the sutures were analyzed by altering the suture-pull angle (θSA) and the anchor rotation angle (θARA). The results show that the abrasion device could provide quantitative comparisons for different sutures. The monofilament structure of poly (p-dioxanone) suture demonstrates the highest breaking strength and exhibits superior abrasion resistance. The groove on the anchor eyelet surface results in inferior abrasion resistance, and the larger the groove size, the higher the abrasion resistance. The suture shows lower abrasion resistance at θSA=0° compared with that at θSA=45°. For the anchor without groove, the suture displayed higher abrasion resistance at θARA=90°. In contrast, for the anchor with groove, the suture showed higher abrasion resistance at θARA=0°.

Key words: surgical suture, anchor, abrasion testing device, abrasion resistance, medical textiles

CLC Number: 

  • TS101.2

Fig.1

Experimental materials morphology. (a) Three kinds of sutures; (b) Three anchors and morphology of anchor eyelet"

Fig.2

Suture abrasion resistance device"

Fig.3

Testing method of suture abrasion resistance. (a)Friction movement mode of suture; (b) Angle of suture and anchor"

Fig.4

Typical force-displacement curves of three types of sutures"

Fig.5

Broken-end morphology of three types of sutures after abrasion"

Tab.1

Effect of anchor eyelet and angle on breaking force of sutures"

实验参数/(°) 锚钉种类 断裂强力/N
θSA θARA
0 0 锚钉A 96.59±3.70
0 0 锚钉B 98.51±2.27
0 0 锚钉C 100.89±3.10
0 90 锚钉A 95.00±2.60
0 90 锚钉B 96.00±1.80
0 90 锚钉C 97.00±1.30
45 0 锚钉A 93.07±0.17
45 0 锚钉B 92.43±5.94
45 0 锚钉C 94.80±4.73
45 90 锚钉A 97.39±4.82
45 90 锚钉B 96.61±1.50
45 90 锚钉C 95.28±0.52

Tab.2

Effect of anchor eyelet and angle on abrasion resistance of sutures"

实验参数/(°) 锚钉种类 摩擦次数n
θSA θARA
0 0 锚钉A 2 213±221
0 0 锚钉B 2 006±102
0 0 锚钉C 1 476±23
0 90 锚钉A 2 726±208
0 90 锚钉B 526±78
0 90 锚钉C 389±51
45 0 锚钉A 1 101±203
45 0 锚钉B 1 011±59
45 0 锚钉C 902±52
45 90 锚钉A 1 336±373
45 90 锚钉B 469±23
45 90 锚钉C 96±7

Fig.6

Swing path of sutures during abrasion test. (a) Swing path of suture at different θSA; (b) Sewing path of suture at θARA=0°; (c) Sewing path of suture at θARA=90°"

[1] VISSCHER L E, JEFFERY C, GILMOUR T, et al. The history of suture anchors in orthopaedic surgery[J]. Clinical Biomechanics, 2019,61:70-78.
doi: 10.1016/j.clinbiomech.2018.11.008 pmid: 30502638
[2] 徐海栋, 陈勇, 卢俊浩, 等. 带线锚钉材料在跟腱断裂修复中的应用[J]. 中国组织工程研究, 2013,17(3):472-476.
XU Haidong, CHEN Yong, LU Junhao, et al. Application of fastin bone anchor material in the repair of achilles tendon rupture[J]. Chinese Journal of Tissue Engineering Research, 2013,17(3):472-476.
[3] 田勇, 马骁. 带线锚钉修复三角韧带损伤: 恢复踝关节稳定性[J]. 中国组织工程研究, 2015,19(22):3565-3570.
TIAN Yong, MA Xiao. Suture anchors for the repair of deltoid ligament injury: restore the stability of ankle joint[J]. Chinese Journal of Tissue Engineering Research, 2015,19(22):3565-3570.
[4] MEYER D C, NYFFELER R W, FUCENTESE S F, et al. Failure of suture material at suture anchor eye-lets[J]. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 2002,18(9):1013-1019.
pmid: 12426545
[5] RUPP S, GEORG T, GAUSS C, et al. Fatigue testing of suture anchors[J]. The American Journal of Sports Medicine, 2002,30(2):239-247.
doi: 10.1177/03635465020300021601 pmid: 11912095
[6] KOWALSKY M S, DELLENBAUGH S G, ERLICHMAN D B, et al. Evaluation of suture abrasion against rotator cuff tendon and proximal humerus bone[J]. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 2008,24(3):329-334.
pmid: 18308186
[7] BARDANA D D, BURKS R T, WEST J R, et al. The effect of suture anchor design and orientation on suture abrasion: an in vitro study[J]. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 2003,19(3):274-281.
doi: 10.1053/jars.2003.50032 pmid: 12627152
[8] DEAKIN M, STUBBS D, BRUCE W, et al. Suture strength and angle of load application in a suture anchor eyelet[J]. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 2005,21(12):1447-1451.
pmid: 16376233
[9] AKTAY S A, KOWALESKI M P. Analysis of suture anchor eyelet position on suture failure load[J]. Veterinary Surgery, 2011,40(4):418-422.
pmid: 21539579
[10] 王璐, 张倩, 王富军, 等. 一种骨科缝合线动态弯曲摩擦性能测试装置及方法: 201811034999.6[P]. 2019-02-22.
WANG Lu, ZHANG Qian, WANG Fujun, et al. A dynamic bending friction testing device and testing method for orthopedic suture: 201811034999.6[P]. 2019-02-22.
[11] 陈晓洁, 王璐, 侯丹丹, 等. 医用缝合线摩擦性能测试装置及测试方法: 201410028095.8[P]. 2016-08-17.
CHEN Xiaojie, WANG Lu, HOU Dandan, et al. Friction ttesting device and testing method for medical suture: 201410028095.8[P]. 2016-08-17.
[12] 焦亚男, 杨志, 张世浩. 实验参数对高性能石英纤维摩擦性能的影响[J]. 纺织学报, 2019,40(7):38-43.
JIAO Ya'nan, YANG Zhi, ZHANG Shihao. Influence of experimental parameters on friction properties of high performance quartz fibers[J]. Journal of Textile Research, 2019,40(7):38-43.
[13] 邬淑芳, 张亭亭, HASAN Md Rokibul, 等. 涤纶网络丝仿麻织物的摩擦性能[J]. 纺织学报, 2019,40(10):134-140.
WU Shufang, ZHANG Tingting, HASAN Md Rokibul, et al. Improvement of friction performance of polyester interlacement yarn linen-like fabric[J]. Journal of Textile Research, 2019,40(10):134-140.
[14] CHU C C. Materials for absorbable and nonabsorbable surgical sutures[M]//Biotextiles as Medical Impl-ants. England: Woodhead Publishing, 2013: 275-334.
[15] 赵帆. 双重可控式编织自增强型可降解血管支架的设计制备及构效关系[D]. 上海:东华大学, 2019: 32.
ZHAO Fan. Design and fabrication of dual controllable braided self-reinforced bioresorbable cardiovascular stent and its structure-function relationship analysis[D]. Shanghai: Donghua University, 2019: 32.
[16] SAVAGE E, HURREN C J, SLADER S, et al. Bending and abrasion fatigue of common suture materials used in arthroscopic and open orthopedic surgery[J]. Journal of Orthopaedic Research, 2013,31(1):132-138.
doi: 10.1002/jor.22185 pmid: 22777625
[17] 刘晓艳, 徐鹏, 张华鹏, 等. 高性能纤维的弯曲疲劳断裂研究[J]. 合成纤维工业, 2003,26(6):11-14.
LIU Xiaoyan, XU Peng, ZHANG Huapeng, et al. Study on flex fatigue resistance of high-performance fiber[J]. China Synthetic Fiber Industry, 2003,26(6):11-14.
[18] 刘来俊, 张倩, 林婧, 等. 用于关节撕脱骨折手术的带线锚钉的结构和性能[J]. 生物医学工程学进展, 2017(4):215-219.
LIU Laijun, ZHANG Qian, LIN Jing, et al. Structures and properties of the suture anchor for the surgery of joint avulsion fracture[J]. Progress in Biomedical Engineering, 2017(4):215-219.
[19] GILES J T, COKER D, ROCHAT M C, et al. Biomechanical analysis of suture anchors and suture materials in the canine femur[J]. Veterinary Surgery, 2008,37(1):12-21.
doi: 10.1111/j.1532-950X.2007.00341.x pmid: 18199052
[1] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[2] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[3] MA Shasha, WANG Junbo, LUO Qian, SI Fang, YANG Min'ge, CHEN Ningbo, ZHANG Xiaofeng, LI Bo. Effect of nickel-phosphorus-nano-SiC-polytetrafluoroethylene electroless composite plating on lifetime of traveller for yarn spinning [J]. Journal of Textile Research, 2020, 41(12): 151-156.
[4] QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166.
[5] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks [J]. Journal of Textile Research, 2020, 41(03): 168-174.
[6] WU Shufang, ZHANG Tingting, HASAN Md Rokibul, CHEN Yiren. Improvement of friction performance of polyester interlacement yarn linen-like fabric [J]. Journal of Textile Research, 2019, 40(10): 134-140.
[7] . Influence of sizing agent on surface and weaving performance of SiC fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 78-84.
[8] . Size-free sizing process for cellulosic yarns [J]. Journal of Textile Research, 2016, 37(2): 85-91.
[9] LING Ming-Hua, ZHANG Hui. Electroless Ag-TiO2 (nanometer) composite coating on PET fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(12): 103-107.
[10] SUN Hong-wen;CHEN Qing-guan . Cohesion testing method and equipment of raw silk [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(1): 80-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!