Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (12): 87-93.doi: 10.13475/j.fzxb.20200300808

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation and properties of conveyor belt reinforced by F-12 aramid fabric

LI Meizhen1(), ZHAO Shiyi1, FENG Yanli2, GUO Xiaoqing1, YU Xiaoqing1   

  1. 1. College of Textile and Light Industry, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
    2. The Sixth Academy of China Aerospace Science and Industry Corporation Limited, Hohhot, Inner Mongolia 010010, China
  • Received:2020-03-03 Revised:2020-09-09 Online:2020-12-15 Published:2020-12-23

Abstract:

In order to improve the adhesion between F-12 aramid fabric and rubber in conveyor belt, epoxy resin and coupling agent A187 were used to modify the fabric. The optimum dosage of epoxy was determined by film forming analysis. The optimum dosage of coupling agent A187 was determined by measuring the hydrophilic height of the modified fabric and the tensile strength of the modified fabric after immersion in resorcinol formaldehyde resin emulsion. Based on the above, the modification of the fabric was vulcanized, and the optimal modification process was determined by testing the peel strength between the fabric and rubber. The results show that when the content of epoxy resin is 25% (o.w.f) and the content of coupling agent A187 is 1.2% (o.w.f), the comprehensive performance of the F-12 aramid fabric conveyor belt is the best. It is found that the fabric with the lowest hydrophilic value turns to have the highest peel strength of 12.1 N/mm, which is higher than what is required in the industry standard. The tensile strength and elongation at break of the single layer conveyor belt are 6 495.25 N and 13% respectively, and 14 493.25 N and 14% for the double layer belt.

Key words: F-12 aramid fabric, epoxy resin, coupling agent A187, conveyor belt, peel strength

CLC Number: 

  • TS193.5

Fig.1

“H” extracted model (a) and molded samples (b)"

Tab.1

Mechanical properties of common filaments for convey core"

纤维
名称
线密度/
dtex
断裂强度/
(cN·dtex-1)
断裂伸长
率/%
初始模
量/GPa
F-12芳纶 1 100 24.43 2.87 134.52
芳纶Ⅱ 1 100 18.61 2.14 123.00
涤纶 1 100 6.91 12.35 12.09
锦纶66 1 400 7.71 15.58 11.36

Tab.2

“H” extraction experiment results N"

样品类型 纤维名称 断裂强力 “H”抽出强力
单束丝 Kevlar 213.2
芳纶Ⅱ 252.9
F-12芳纶 294.9
帘子线 Kevlar 524.7
芳纶Ⅱ 532.8
F-12芳纶 577.1
二浴改性帘子线 Kevlar 373.3 125.4±3.31
芳纶Ⅱ 370.1 139.5±3.45
F-12芳纶 515.3 167.6±3.58

Tab.3

Mechanical properties of F-12 aramid filaments at different twists"

捻度/
(捻·10 cm-1)
断裂强
力/N
断裂伸
长率/%
初始模
量/GPa
“H”抽出
力/N
0 222.50 2.85 134.52 120.5
4 227.66 2.67 137.58 122.5
6 263.60 2.87 137.06 125.8
8 270.65 2.98 137.24 121.7
10 260.82 2.94 133.53 121.3

Tab.4

Mechanical properties of F-12 aramid filaments"

改性方式 断裂强度/(cN·dtex-1) 断裂伸长率/%
未处理样品 22.91±1.04 1.50±0.37
一浴改性处理样品 18.98±2.21 3.14±0.80
二浴改性处理样品 24.58±2.66 2.85±0.19

Fig.2

SEM images of modified fiber surface after one-bath modification(×1 000)"

Fig.3

Influence of amount of coupling agent on hydrophilic height of fabric after one-bath modification and drawing strength of filament after two-bath modification"

Fig.4

Effect of amount of cross-linking agent on strength of filament after two-bath modification"

Tab.5

Tensile property of F-12 aramid fabric"

处理方法 试样厚度/mm 断裂强度/MPa 断裂伸长率/%
未改性织物 0.58±0.03 441.91±7.61 11.0±0.93
一浴改性织物 0.59±0.03 658.98±8.54 9.10±1.21
二浴改性织物 0.53±0.03 586.86±9.16 7.10±1.17

Fig.5

Coating of belt samples after peeling off. (a) Original sample; (b) Sample after two bath modification"

Fig.6

Peeling curve of conveyor belt sample"

Fig.7

Stripping curve of belt samples before and after aging"

Fig.8

Overlapping of conveyor belt samples before (a) and after (b) aging"

Fig.9

Stress-strain curves of conveyor belt"

Tab.6

Tensile property of belt samples"

铺层
方式
厚度/
mm
断裂强
力/N
断裂强
度/MPa
断裂伸长
率/%
单层 7.6 6 495.25 95.00 13
双层 8.5 14 493.25 187.08 14

Fig.10

Stripping curve of conveyor belt after 10 000 (a) and 20 000 (b) times fatigue"

[1] 王亮. 新型轻型输送带的研究与开发[D]. 上海:东华大学, 2011: 4-6.
WANG Liang. Research and development of new lightweight conveyor belt[D]. Shanghai:Donghua University, 2011: 4-6.
[2] 刘克杰, 杨文良, 彭涛, 等. 芳纶表面改性技术进展(一):物理改性方法[J]. 合成纤维, 2011,40(6):25-30.
LIU Kejie, YANG Wenliang, PENG Tao, et al. Progress in surface modification of aramid fiber(Ⅰ): physical modification[J]. Synthetic Fiber in China, 2011,40(6):25-30.
[3] 刘克杰, 杨文良, 彭涛, 等. 芳纶表面改性技术进展(二):化学改性方法[J]. 合成纤维, 2011,40(7):26-31.
LIU Kejie, YANG Wenliang, PENG Tao, et al. Progress in surface modification of aramid fiber (Ⅱ): chemical modification[J]. Synthetic Fiber in China, 2011,40(7):26-31.
[4] 李沙沙. 对位芳纶化学改性及其性能研究[D]. 烟台:鲁东大学, 2015: 3.
LI Shasha. Chemical modification and research on properties of PPTA[D]. Yantai:Ludong University, 2015: 3.
[5] 刘广生, 周煜华, 杨静, 等. 硅烷偶联剂应用研究进展[J]. 江西化工, 2019(6):75-77.
LIU Guangsheng, ZHOU Yuhua, YANG Jing, et al. Advances in application research of silane coupling agent[J]. Jiangxi Chemical Industry, 2019(6):75-77.
[6] 申明霞, 李红香, 杨开宇, 等. 芳纶纤维表面处理与浸渍工艺研究[J]. 材料开发与应用, 2008(1):41-44,50.
SHEN Mingxia, LI Hongxiang, YANG Kaiyu, et al. Surface treatment and dipping process of kevlar fiber[J]. Development and Application of Materials, 2008(1):41-44,50.
[7] 李红宇, 李志华, 郑雪岩, 等. 胶粘剂剥离强度试验数据处理分析[J]. 哈尔滨理工大学学报, 1999(1):60-62.
LI Hongyu, LI Zhihua, ZHENG Xueyan, et al. Processing and analysis of adhesive peel strength test data[J]. Journal of Harbin University of Science and Technology, 1999(1):60-62.
[8] VALANTIN Chloé, LACROIX Florian, DEFFARGES Marie-pierre, et al. Interfacial damage on fatigue-loaded textile-rubber composites[J]. Journal of Applied Polymer Science, 2015,132(4):13.
[9] 刘维. 浸胶体系和交联体系对EPDM型耐热输送带的粘合性能影响研究[D]. 北京:北京化工大学, 2015: 42-44.
LIU Wei. The research of dipping solution and vulcanization on the adhesion properties of EPDM resistant conveyor belt[D]. Beijing:Beijing University of Chemical Technology, 2015: 42-44.
[10] LI Zhuo, WAN Jijun, ZHANG Lu, et al. Effects of heat and moisture on characteristics, tensile properties of RFL-coated rayon cords, and their adhesion with NR/SBR matrix[J]. Journal of Applied Polymer Science, 2017,134(48):45559.
doi: 10.1002/app.45559
[1] CAO Haijian, CHEN Hongxia, HUANG Xiaomei. Numerical simulation of side compressive properties on glass fiber/epoxy resin sandwich composite [J]. Journal of Textile Research, 2019, 40(05): 59-63.
[2] SUN Lei, CAI Yingying, YE Wei, JI Tao, SUN Qilong. Influence of dielectric barrier discharge on adherent property of hose reinforcement layer [J]. Journal of Textile Research, 2019, 40(03): 96-101.
[3] . Influence of sizing agent on surface and weaving performance of SiC fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 78-84.
[4] . Preparation of epoxy resin curing agent using waste PET [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(1): 12-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!