Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (01): 40-45.doi: 10.13475/j.fzxb.20200301106

• Fiber Materials • Previous Articles     Next Articles

Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh

YANG Gang1,2,3, LI Haidi1,2, QIAO Yansha1,2, LI Yan1,2(), WANG Lu1,2, HE Hongbing1,3   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Shanghai PINE & POWER Biotech Co., Ltd., Shanghai 201100, China
  • Received:2020-03-05 Revised:2020-07-30 Online:2021-01-15 Published:2021-01-21
  • Contact: LI Yan E-mail:yanli@dhu.edu.cn

Abstract:

This paper reports on a research on preparation and characterization of a new tissue mesh engineered for hernia repair, where poly(L-lactide-co-caprolactone)/P(LLA-CL) and fibrinogen were blended in different proportions for electro-spinning. A series of P(LLA-CL)/fibrinogen composite nanofiber membranes were prepared, and their micromorphology, surface composition, wettability, mechanical properties and cellular compatibility were characterized and analyzed by scanning electron microscope, Fourier-transformed infrared spectroscopy, X-ray photoelectron spectroscopy, and cell experiments. The results showed that, after combining P(LLA-CL) with fibrinogen, the obtained fibrous membranes were all composed of nanoscale fibers and the porosity reached more than 60%. The addition of fibrinogen greatly improved the hydrophilicity of P(LLA-CL) and changed its original mechanical property. The results show that the P(LLA-CL)/fibrinogen nanofibrous membrane has a good cellular compatibility, and the high level porosity promotes the cell proliferation. In general, the nanofiber based hernia mesh demonstrates a great potential for tissue regeneration, providing a new hope for hernia repair.

Key words: hernia mesh, poly(L-lactide-co-caprolactone), fibrinogen, electrospinning, medical textiles

CLC Number: 

  • TS181.8

Tab.1

Cytotoxic response classification"

细胞毒性分级 RGR/% 细胞毒性
0 ≥100
I 75~99
II 50~74 轻度
III 25~49 中度
IV 1~24 中度
V <1 明显

Fig.1

SEM images of average diameter of P (LLA-CL)/fibrinogen electrospun membranes at different volume ratios (×3 000)"

Fig.2

Diameter distribution of fibers"

Tab.2

Porosity of P (LLA-CL)/fibrinogen composite electrospun membrane at different volume ratios"

P(LLA-CL)与纤维蛋白原体积比 孔隙率/%
1:0 56.56±1.32
2:1 63.25±2.07
1:1 69.31±1.77
1:2 71.22±1.94
0:1 72.87±2.31

Fig.3

FT-IR spectra of different samples"

Tab.3

Content of each element in P (LLA-CL)/fibrinogen electrospun membrane at different volume ratios"

P(LLA-CL)与纤维
蛋白原体积比
含量 /%
C N O S
1:0 67.71 0.00 32.74 0.00
2:1 69.04 3.35 29.08 0.17
1:1 67.53 4.21 28.55 0.23
1:2 66.38 8.63 25.69 0.29
0:1 65.46 15.12 18.30 0.58

Fig.4

Water contact angles images of samples"

Tab.4

Water contact angels of P (LLA-CL)与fibrinogen electrospun membrane at different volume ratios"

P(LLA-CL)与纤维
蛋白原体积比
接触角 /(°)
1:0 137.4±4.5
2:1 83.7±2.1
1:1 59.3±1.0
1:2 34.2±3.1
0:1 19.3±3.3

Fig.5

Stress-strain curves of electrospun membranes at different ratios"

Tab.5

Mechanical properties of P (LLA-CL)/fibrinogen composite electrospun membrane at different volume ratios"

P(LLA-CL)与纤维
蛋白原体积比
断裂强度/
MPa
弹性模量/
MPa
断裂
伸长率/%
1:0 8.10±0.14 5.48±0.35 190.23±15.14
2:1 7.61±0.83 8.36±0.76 60.26±3.01
1:1 6.80±0.35 9.59±1.17 54.40±2.81
1:2 2.26±0.18 10.31±0.52 40.93±2.02
0:1 1.36±0.09 15.05±2.14 21.34±4.23

Fig.6

Cytotoxicity in different samples"

Tab.6

RGR values of different samples"

样品组别 相对增殖率/%
1 d 3 d 5 d
P(LLA-CL)/纤维蛋白原 81.3 87.8 93.8
阴性对照组 82.5 88.8 98.4
阳性对照组 21.6 9.3 7.9

Fig.7

OD values of L929 adhered on different substrates"

Tab.7

L929 adhesion rates on different substrates"

P(LLA-CL)与纤维
蛋白原体积比
细胞黏附率 /%
4 h 24 h 72 h 120 h 168 h
1:0 15.9 19.1 25.3 31.1 34.3
2:1 9.0 18.8 24.2 62.5 78.7
1:1 10.8 20.6 29.6 50.5 69.0
1:2 9.0 17.0 27.1 46.9 59.6
0:1 9.0 18.1 25.6 41.5 62.8
[1] 许洪斌. 全面解读疝气[N]. 卫生与生活报, 2008 -02-01(1).
XU Hongbin. Comprehensive interpretation of hernia [N]. Journal of Health and Life, 2008 -02-01(1).
[2] 段先召, 王婉东, 陈洪流. 腹股沟疝修补术后慢性疼痛的最新研究进展[J]. 世界最新医学信息, 2018,72:78-82.
DUAN Xianzhao, WANG Wandong, CHEN Hongliu. Recent advances in chronic pain after inguinal hernia repair[J]. World Latest Medicine Information, 2018,72:78-82.
[3] NICHOLAS P, ELIE R, JULIE S G. Cancer of unknown primary: incidence rates, risk factors and survival among adolescents and young adults[J]. International Journal of Cancer, 2019,146(6):1490-1498.
pmid: 31144291
[4] ASLANI N, BROWN C J. Does mesh offer an advantage over tissue in the open repair of umbilical hernias systematic review and meta-analysis[J]. Hernia, 2010,14(5):455-462.
doi: 10.1007/s10029-010-0705-9 pmid: 20635190
[5] NEIL J Smart. Biological meshes: a review of their use in abdominal wall hernia repairs[J]. Surgeon, 2012 ( 3):159-171.
[6] 郭盛旗. 人工材料聚丙烯补片在修补腹壁切口疝中的应用[J]. 中国组织工程研究与临床康复, 2010(47):8881-8884.
GUO Shengqi. Application of artificial material polypropylene patch in repairing abdominal wall incision hernia[J]. Journal of Tissue Engineering Research and Clinical Rehabilitation, 2010 (47):8881-8884.
[7] 陈双, 杨斌. 疝修补的新型材料[J]. 中国微创外科杂志, 2007(12):1123-1124.
CHEN Shuang, YANG Bin. New materials for hernia repair[J]. Chinese Journal of Minimally Invasive Surgery, 2007 (12):1123-1124.
[8] BELLOWS C F, JIAN W, M C HALE M K, et al. Blood vessel matrix: a new alternative for abdominal wall reconstruction[J]. Hernia, 2008,12(4):351-358.
pmid: 18235999
[9] 陈富强, 申英末. 生物补片在疝和腹壁外科的应用及研究进展[J]. 中华疝和腹壁外科杂志, 2016,10(5):364-368.
CHEN Fuqiang, SHEN Yingmo. Application and research progress of biologic patch in hernia and abdominal wall surgery[J]. Chinese Journal of Hernia and Abdominal Wall Surgery, 2016,10(5):364-368.
[10] AGARWAL S, WENDORFF J H, GREINER A. Use of electrospinning technique for biomedical applica-tions[J]. Polymer, 2008,49(26):5603-5621.
[11] QIN C X, CHENG S, WANG J J, et al. Preparation of nano-fluorescent polyimide fibers by electrospin-ning[J]. Journal of Fiber Bioengineering & Informatics, 2009,2(4):226-230.
[12] MO X M, XU C Y, KOTAKI M, et al. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation[J]. Biomaterials, 2004,25(10):1883-1890.
doi: 10.1016/j.biomaterials.2003.08.042
[13] 郭明珠. 血浆纤维蛋白原、D-二聚体在AECOPD中的临床应用分析[D]. 长春:吉林大学中日联谊医院, 2016: 37-39.
GUO Mingzhu. Analysis of clinical application of plasma fibrinogen and D-dimer in AECOPD [D]. Changchun: China-Japan Friendship Hospital of Jilin University, 2016: 37-39.
[14] 王永先, 包斌, 宋瑞瑞. 纤维蛋白原的空间结构特征[J]. 生理科学进展, 2012,43(5):397-401.
WANG Yongxian, BAO Bin, SONG Ruirui. Spatial structural characteristics of fibrinogen[J]. Advances in Physiological Sciences, 2012,43(5):397-401.
[15] LEE J, TAE G, KIM Y H, et al. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility[J]. Biomaterials, 2008,29(12):1872-1879.
pmid: 18234330
[1] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[2] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[3] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[4] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan / polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[5] ZHANG Qian, MAO Jifu, LÜ Luyao, XU Zhongmian, WANG Lu. Abrasion resistance of suture at anchor eyelet for tendon-bone repair and its influencing factors [J]. Journal of Textile Research, 2020, 41(12): 66-72.
[6] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride / FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[7] WANG Liyuan, KANG Weimin, ZHUANG Xupin JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[8] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[9] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[10] QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166.
[11] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[12] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[13] WU Hong, LIU Chengkun, MAO Xue, YANG Zhi, CHEN Meiyu. Research progress in preparation and application of flexible zirconia nanofibers by electrospinning [J]. Journal of Textile Research, 2020, 41(07): 167-173.
[14] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[15] HAO Zhifen, XU Naiku, FENG Yan, DUAN Mengxin, XIAO Changfa. Preparation of fibrous membrane by blending polymethacrylate with polyacrylate and its oil / water separation property [J]. Journal of Textile Research, 2020, 41(06): 21-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!