Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (08): 179-187.doi: 10.13475/j.fzxb.20200306809

• Column: Medical Protective Textiles • Previous Articles     Next Articles

Structure and functions of medical protective clothing and trend for research and development

CHEN Shiping1,2, CHEN Min1,2, WEI Cen1,2, WANG Fujun1,2,3, WANG Lu1,2,4()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Engineering Research Center of Technical Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    4. Key Laboratory of Biomedical Textile Materials and Technology in Textile Industry, Donghua University, Shanghai 201620, China
  • Received:2020-03-25 Revised:2020-05-15 Online:2020-08-15 Published:2020-08-21
  • Contact: WANG Lu E-mail:wanglu@dhu.edu.cn

Abstract:

In order to understand the research status of medical protective clothing in depth, aiming at the medical needs, this research analyzed four types of protective clothing, i.e., the "three-rejection and one-resistance" finished spunbond-meltblown-spunbond (SMS) composite protective clothing, microporous film/nonwoven composite protective clothing, flash distillation nonwoven protective clothing, and positive pressure biological protective clothing, from the aspects of the occasions of use, design and preparation technology, structural efficiency characteristics and protective mechanism of composite material protective clothing. The study reveals that the SMS composite materials have better comfort, the microporous film/nonwoven composite materials offer better protection, while the flash vaporization materials demonstrate excellent comprehensive performance and achieve an ideal balance between comfort and protection. The key to achieve effective medical protective clothing is making breakthrough in the preparation technology which lies in the large-scale production of high-performance polytetrafluoroethy-lene membranes and the localization of the flash evaporation process. At the same time, nanotechnology can provide new ideas for the development of new materials. The future development direction of positive pressure biological protective clothing is the generalization of functions, monitoring automation and informatization.

Key words: medical protective clothing, positive pressure biological protective clothing, protective mechanism, polytetrafluoroethylene membrane, functional finish, nonwoven composite

CLC Number: 

  • TS106.67

Fig.1

Design ideas and production process of medical protective clothing"

Fig.2

Schematic diagrams and SEM images of two nonwoven composite materials. (a) SMS composite material; (b) Breathable microporous film/nonwoven composite material"

Fig.3

SEM image of flash spinning nonwovens"

Tab.1

Efficacy comparison of three materials"

材料名称 防水性 透气性 耐磨性
SMS复合材料 次之 最好 最差
微孔薄膜/非织
造布复合材料
最好 最差 次之
闪蒸法材料 最好 次之 最好

Fig.4

Structure of medical protective clothing"

Fig.5

Schematic diagram of protection mechanism of fine particles"

Fig.6

Style and main components of power supply positive pressure biological protective clothing"

Tab.2

Comparison of performance parameters of two positive pressure biological protective clothing"

结构
形式
防护
因子
静态正压
差/Pa
送风量/
(L·min-1)
高效过滤
器的过滤
效率
(0.3 μm)/%
自持
时间/
h
半身式 >50 000 ≥25 ≥150 >99.99 >6
全身式 >100 000 >120 ≥350 >99.99 >5
[1] 陈康振. 医用防护服材料的发展及应用[J]. 产业用纺织品, 2004,22(6):1-4.
CHEN Kangzhen. Development and application of medical protective clothing materials[J]. Technical Textiles, 2004,22(6):1-4.
[2] 李汉堂. 防护服的发展及发展趋势[J]. 现代橡胶技术, 2019,45(5):1-11.
LI Hantang. Development and trend of protective clothing[J]. Modern Rubber Technology, 2019,45(5):1-11.
[3] 杨建忠, 王新艳. 医用防护服织物的结构与透湿量[J]. 纺织学报, 2006,27(3):11-15.
YANG Jianzhong, WANG Xinyan. Structure and moisture permeability of medical protective clothing fabrics[J]. Journal of Textile Research, 2006,27(3):11-15.
[4] 徐桂龙, 王璐. 国内外医用手术防护服标准比较及分析(一)[J]. 产业用纺织品, 2006,24(10):36-39.
XU Guilong, WANG Lu. Comparison and analysis of medical surgical protective clothing standards at home and abroad (Ⅰ)[J]. Technical Textiles, 2006,24(10):36-39.
[5] 刘亚, 吴汉泽, 程博闻, 等. 非织造医用防护材料技术进展及发展趋势[J]. 纺织导报, 2017(S1):78-82.
LIU Ya, WU Hanze, CHENG Bowen, et al. Technical progress and development trend of nonwoven medical protective materials[J]. China Textile Leader, 2017 (S1):78-82.
[6] 国家卫生健康委员会办公厅, 国家中医药管理局办公室. 新型冠状病毒感染的肺炎诊疗方案(试行第七版)[EB/OL]. [2020-03-04]. http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml.
General Office of the National Health Council, Office of the State Administration of Traditional Chinese Medicine. Diagnosis and treatment of pneumonia caused by new coronavirus (trial version seventh) [EB/OL]. [2020-03-04]. http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml.
[7] 沈伟, 何静芳, 苏怡, 等. 医用防护服与防护口罩阻隔性能研究[J]. 中国消毒学杂志, 2005(4):386-390.
SHEN Wei, HE Jingfang, SU Yi, et al. Study on barrier properties of medical protective clothing and protective masks[J]. Chinese Journal of Disinfection, 2005 (4):386-390.
[8] 刘鸣. PTFE微孔膜物理亲水改性研究[D]. 杭州: 浙江理工大学, 2010: 20-21.
LIU Ming. Study on physical hydrophilic modification of PTFE microporous membrane [D]. Hangzhou: Zhejiang Sci-Tech University, 2010: 20-21.
[9] 司徒元舜, 罗俊, 董玉洁. 卫生与医疗制品用非织造材料简析[J]. 化纤与纺织技术, 2015,44(4):22-26.
SITU Yuanshun, LUO Jun, DONG Yujie. Analysis of non-woven materials for sanitary and medical products[J]. Chemical Fibers & Textile Technology, 2015,44(4):22-26.
[10] 姜慧霞. 医用防护服材料的性能评价研究[D]. 天津: 天津工业大学, 2008: 6-12.
JIANG Huixia. Study on performance evaluation of medical protective clothing materials[D]. Tianjin: Tianjin Polytechnic University, 2008: 6-12.
[11] KITAMURA T, OKABE S. Morphology change in polytetrafluoroethylene (PTFE), porous membrane caused by heat treatment[J]. Polymer Engineering and Science, 2000,40(3):809-817.
[12] PARK S H, LEE H B, YEON S M, et al. Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates[J]. ACS Applied Materials & Interfaces, 2016,8(37):24773-24781.
doi: 10.1021/acsami.6b07833 pmid: 27571166
[13] 张建春, 郝新敏. 医用PTFE复合膜“非典”防护服材料的研究[C]// 张建春, 郝新敏, 崔福斋, 等. 第三届功能性纺织品及纳米技术应用研讨会论文集. 北京: 北京纺织工程学会, 2003: 15-23.
ZHANG Jianchun, HAO Xinmin. Research on SARS protective clothing materials for medical PTFE composite membrane[C]// ZHANG Jianchun, HAO Xinmin, CUI Fuzhai, et al. Proceedings of the 3rd Functional Textile and Nanotechnology Application Symposium. Beijing: Beijing Textile Engineering Society, 2003: 15-23.
[14] 姚登辉, 许增慧, 吕水君, 等. 复用医用手术服面料的工艺研究[J]. 纺织科学研究, 2019(6):92-95.
YAO Denghui, XU Zenghui, LÜ Shuijun, et al. Research on the technology of reused medical surgical gown fabric[J]. Textile Science Research, 2019 (6):92-95.
[15] 郝新敏, 张建春, 杨元. 医用多功能防护服研究与发展[J]. 中国安全科学学报, 2005(6):80-84.
HAO Xinmin, ZHANG Jianchun, YANG Yuan. Research and development of medical multifunctional protective clothing[J]. Chinese Journal of Safety Science, 2005 (6):80-84.
[16] 马林R A, 马沙尔L R, 米勒A D. 形成均匀材料的旋转法及由该方法形成的膜: 200580010134.0[P]. 2012-03-21.
MARIN R A, MARCHAL L R, MILLER A D. Rotating method for forming uniform material and film formed by this method: 200580010134.0[P]. 2012-03-21.
[17] 杜邦公司. 采用直链氢氟碳化合物助溶剂的闪蒸纺丝溶液和闪蒸纺丝方法: 200380107120.1[P]. 2010-11-24.
Du Pont. Flash spinning solution and flash spinning method using linear HFC cosolvent: 200380107120.1 [P]. 2010-11-24.
[18] 杜邦公司. 闪蒸纺制的薄片材料: 00814511.3 [P]. 2005-10-05.
Du Pont. Sheet material made by flash spinning: 00814511.3 [P]. 2005-10-05.
[19] 杜邦公司. 形成均匀分布材料的方法: 200480008674.0 [P]. 2009-09-09.
Du Pont. Method for forming uniformly distributed materials: 200480008674.0 [P]. 2009-09-09.
[20] 冷纯廷, 张旭. 闪蒸法非织造布生产技术[J]. 北京纺织, 1997(5):20-21.
LENG Chunting, ZHANG Xu. Non-woven fabric production technology by flash evaporation method[J]. Beijing Textile, 1997 (5):20-21.
[21] 阚泓, 王国建. 闪蒸法非织造布专利技术分析[J]. 纺织科技进展, 2019(9):28-33.
KAN Hong, WANG Guojian. Analysis of patented technology of non-woven fabrics by flash steam[J]. Progress in Textile Science & Technology, 2019 (9):28-33.
[22] 梁越, 刘春玲, 冼启华, 等. 闪蒸纺超细纤维非织造布研究及其应用[J]. 福建轻纺, 2010(7):29-31.
LIANG Yue, LIU Chunling, XIAN Qihua, et al. Research and application of flash spinning microfiber nonwovens[J]. Fujian Light Textile, 2010 (7):29-31.
[23] 杜邦公司. 杜邦TYVEK特卫强医用一次性防护服产品手册[EB/OL]. [2020-02-11]. https://www.dupont.com.au/personal-protective-equipment.html.
Du Pont. DuPont TYVEK medical disposable protective clothing product manual[EB/OL]. [2020-02-11]. https://www.dupont.com.au/personal-protective-equipment.html.
[24] 戴文婧, 许文锋, 王燕慧, 等. 医用一次性防护服的国家医疗器械抽验[J]. 医疗装备, 2018,31(5):38-39.
DAI Wenjing, XU Wenfeng, WANG Yanhui, et al. National medical device sampling inspection of medical disposable protective clothing[J]. Medical Equipment, 2018,31(5):38-39.
[25] 杜晨辉, 夏磊, 刘亚, 等. 闪蒸纺超细纤维非织造布应用研究[J]. 非织造布, 2008(2):27-30.
DU Chenhui, XIA Lei, LIU Ya, et al. Application research of flash-spun superfine fiber nonwovens[J]. Nonwovens, 2008 (2):27-30.
[26] 曲方圆. SMS非织造手术衣材料泡沫整理工艺研究[D]. 上海: 东华大学, 2016: 3-5.
QU Fangyuan. Study on the foam finishing process of SMS nonwoven surgical gown materials[D]. Shanghai: Donghua University, 2016: 3-5.
[27] 郝新敏. 选择性渗透膜材料传质模型及生化防护机理的研究[D]. 上海: 东华大学, 2005: 99-101.
HAO Xinmin. Study on the mass transfer model and biochemical protection mechanism of selective membrane materials[D]. Shanghai: Donghua University, 2005: 99-101.
[28] MCLELLAN T M. Chemical-biological protective clothing: effects of design and initial state on physiological strain[J]. Aviation Space and Environmental Medicine, 2008,79:500-508.
[29] 吴金辉, 郝丽梅, 王润泽, 等. 埃博拉疫情防控正压生物防护服研究[J]. 医疗卫生装备, 2014,35(12):93-96.
WU Jinhui, HAO Limei, WANG Runze, et al. Research on positive pressure biological protective clothing for Ebola outbreak prevention and control[J]. Medical and Health Equipment, 2014,35(12):93-96.
[30] 国家生物防护装备工程技术研究中心. 新冠肺炎疫情防控生物安全防护装备手册[EB/OL]. [2020-03-10]. http://www.npec.org.cn/xinwenzhongxin/zhongxinyaowen/2020/0310/317.html.
National Engineering Research Center for Biological Protection Equipment. Manual of biosafety protection equipment for prevention and control of new crown pneumonia[EB/OL]. [2020-03-10]. http://www.npec.org.cn/xinwenzhongxin/zhongxinyaowen/2020/0310/317.html.
[31] 吴金辉, 田涛, 林松, 等. 正压防护技术在生物个体防护装备中的研究现状与趋势[J]. 医疗卫生装备, 2010,31(4):31-33.
WU Jinhui, TIAN Tao, LIN Song, et al. Research status and trends of positive pressure protection technology in biological personal protective equip-ment[J]. Medical and Health Equipment, 2010,31(4):31-33.
[32] 吴金辉, 王政. 整体式正压生物防护服研制及防护性能实验研究[C]// 林松, 祁建城, 张金明, 等. 第十四届中国科协年会第十七分会场: 环境危害与健康防护研讨会论文集. 北京: 中国科学技术协会, 2013: 158-164.
WU Jinhui, WANG Zheng. Development and experimental research on integral positive pressure biological protective clothing[C]// LIN Song, QI Jiancheng, ZHANG Jinming, et al. Seventeenth Branch of the 14th Annual conference of Chinese Association for Science and Technology: Environmental Hazards and Health Protection Proceedings. Beijing: China Association for Science and Technology, 2013: 158-164.
[33] HENRY N W. Four decades of protective clothing development and standardization[J]. Journal of Chemical Health and Safety, 2007,5(3):135-136.
[34] TESCH K, COOLLINS M W, KARAYIANNIS T G, et al. Heat and mass transfer in air-fed pressurized suits[J]. Applied Thermal Engineering, 2008,62:1-8.
[35] 医疗器械质量与检测. 一次性医用防护服, PE透气膜料介绍[EB/OL]. [2020-02-26]. https://www.sohu.com/a/376084690_120067396.
Quality and Testing of Medical Equipment. Introduction of disposable medical protective clothing, PE breathable film material [EB/OL]. [2020-02-26]. https://www.sohu.com/a/376084690_120067396.
[36] 张宗兴, 吴金辉, 衣颖, 等. 我国生物安全实验室关键防护技术与装备发展概况[J]. 中国卫生工程学, 2019,18(5):641-646.
ZHANG Zongxing, WU Jinhui, YI Ying, et al. Development of key protection technologies and equipment for biosafety laboratories in China[J]. China Health Engineering, 2019,18(5):641-646.
[37] 张荫楠. 智能安全防护用纺织品的研究和应用新进展[J]. 纺织导报, 2017(S1):94-103.
ZHANG Yinnan. New research and application of smart safety protective textiles[J]. China Textile Leader, 2017(S1):94-103.
[38] 李江存, 江丁洋, 梁婷, 等. 纳米技术的研究进展及在化生防护中的应用[J]. 科技资讯, 2018,16(19):75-76.
LI Jiangcun, JIANG Dingyang, LIANG Ting, et al. Research progress of nanotechnology and its application in biochemical protection[J]. Science & Technology Information, 2018,16(19):75-76.
[39] 生俊露. 静电纺纳米纤维防水透湿膜的加热/涂层改性及性能优化研究[D]. 上海: 东华大学, 2017: 13-21.
SHENG Junlu. Study on heating/coating modification and performance optimization of electrospun nanofiber waterproof and moisture permeable film[D]. Shanghai: Donghua University, 2017: 13-21.
[40] 李正海. 医用一次性防护服标准对比及评价方法的研究[D]. 上海: 东华大学, 2018: 3-4.
LI Zhenghai. Study on standard comparison and evaluation method of medical disposable protective clothing[D]. Shanghai: Donghua University, 2018: 3-4.
[41] 郎楠, 袁媛, 周静. 防控新型冠状病毒肺炎医用个体防护装备国内外标准的比较[J]. 职业卫生与应急救援, 2020,38(2):1-4.
LANG Nan, YUAN Yuan, ZHOU Jing. Comparison of domestic and foreign standards for medical personal protective equipment for the prevention and control of new coronavirus pneumonia[J]. Occupational Health and Emergency Rescue, 2020,38(2):1-4.
[42] 李正海, 薛文良, 魏孟媛, 等. 医用一次性防护服测试标准的现状与比较分析[J]. 产业用纺织品, 2017,35(10):37-42.
LI Zhenghai, XUE Wenliang, WEI Mengyuan, et al. Current status and comparative analysis of test standards for disposable medical protective clothing[J]. Technical Textiles, 2017,35(10):37-42.
[43] 王润泽, 王政, 吴金辉. 正压生物防护服检测技术[J]. 医疗卫生装备, 2016,37(9):98.
WANG Runze, WANG Zheng, WU Jinhui. Detection technology of positive pressure biological protective clothing[J]. Medical and Health Equipment, 2016,37(9):98.
[44] 郝丽梅, 张宗兴, 林松, 等. 国内外正压生物防护装备标准比较及分析[J]. 医疗卫生装备, 2018,39(5):90-96.
HAO Limei, ZHANG Zongxing, LIN Song, et al. Comparison and analysis of positive pressure biological protection equipment standards at home and abroad[J]. Medical and Health Equipment, 2018,39(5):90-96.
[1] MIN Xiaobao, PAN Zhijuan. Comparison and analysis on structure and function of medical protective clothing [J]. Journal of Textile Research, 2020, 41(08): 172-178.
[2] WANG Yating, ZHAO Jiaqi, WANG Bijia, FENG Xueling, QIAN Guochun, SUI Xiaofeng. Research progress in dyeing and functional finishing of artificial microfiber leather [J]. Journal of Textile Research, 2020, 41(07): 188-196.
[3] FU Lisong, ZHANG Shujie, WANG Rui, YANG Zhaowei, JING Mengke. Tensile strength of polyester / ramie nonwoven composite applied on pipeline rehabilitation [J]. Journal of Textile Research, 2020, 41(02): 52-57.
[4] CHANG Shuo, SHEN Jiajia. Research progress of graphene durable finishing of textiles [J]. Journal of Textile Research, 2020, 41(02): 179-186.
[5] YI Ling, ZHANG He, FU Xin, LI Wen. Preparation and far-infrared emission performance of graphene based zirconium / titanium composites modified cotton fabrics [J]. Journal of Textile Research, 2020, 41(01): 102-109.
[6] WANG Hao, DU Zhaofang, XU Yunhui. Preparation of oxidized chitosan/sericin composite and its functional finish on cotton fabrics [J]. Journal of Textile Research, 2019, 40(11): 119-124.
[7] LIU Qixia, ZHOU Yiru, YANG Zhilian, WANG Mei, JI Tao. Preparation and properties of spherical activated carbon-based composite fabric for permeable chemical protective clothing [J]. Journal of Textile Research, 2019, 40(06): 182-188.
[8] WU Jihui, ZOU Wanqing, TANG Mingzhu, SHEN Xiaoyu, YANG Jiamin, ZHANG Lufen. Effect of negative ion far-infrared functional fabrics on hyperplasia of mammary gland rats model [J]. Journal of Textile Research, 2019, 40(06): 68-72.
[9] GUAN Jinping, KUANG Xiaohui, TANG Rencheng, CHEN Guoqiang. Functional finishing of dopamine modified silk fabric with ferric chloride [J]. Journal of Textile Research, 2019, 40(02): 130-134.
[10] . Study on stab-resistant performance of shear thickening fluids impregnated ultra-high-molecular-weight polyethylene fabric [J]. Journal of Textile Research, 2018, 39(10): 58-62.
[11] . Research progress in priparation of nano silver and its application in textiles [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 171-178.
[12] . Research progress on textile finishing with assistance of supercritical carbon dioxide [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 177-184.
[13] . Synthesis and application of an environmentally friendly multi-finishing agent [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 74-77.
[14] ZHANG Na;WANG Jia-jun. Coolness and comfort properties of wool [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(11): 110-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!