Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 143-149.doi: 10.13475/j.fzxb.20200307607

• Apparel Engineering • Previous Articles     Next Articles

New intelligent mining clothing design with real-time gas monitoring function

JIN Peng1, XUE Zhebin2(), GE Yao2   

  1. 1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. School of Design, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2020-03-27 Revised:2020-08-06 Online:2020-11-15 Published:2020-11-26
  • Contact: XUE Zhebin E-mail:zhebin.xue@jiangnan.edu.cn

Abstract:

In view of the existing problems in the lack of comfort and safety for mining clothing, a improved design was put forward from the perspectives of clothing materials, structure and functional modules. From the perspectives of antistatic and flame retardant, silver fiber blended fabric was chosen as the main material for the new mining clothing. Based on ergonomics, the clothing parts that affect wearing comfort were redesigned. In addition, based on the safety requirements of underground work, a gas monitoring and warning module is added to the right chest position of the mine clothing. The test results show that by simulating the underground environment with high temperature and humidity (35 ℃, 70% humidity), the newly designed mining clothing obtained 1.32 points higher than that of the traditional mining suits in subjective evaluation according to the new 7-point system, and the average skin surface temperature is proven to rise more slowly. Meanwhile, the gas monitoring system is able to measure the gas concentration in real time, ensuring the safety of the underground workers.

Key words: mining clothing, structural design, gas monitoring, intelligent clothing

CLC Number: 

  • TS941.731

Fig.1

Research framework"

Fig.2

Place of reflective strip pasted. (a) Front structure drawing; (b) Reverse structure drawing"

Fig.3

Connection diagram"

Fig.4

Schematic diagram of terminal web page"

Fig.5

Gas monitoring module running process"

Tab.1

Mean value of subjective assessment for the first 5 min"

时间 1 min 2 min 3 min 4 min 5 min
组1 6.8 6.4 6.1 5.1 4.0
组2 6.9 6.6 6.4 6.0 5.8

Tab.2

Mean value of subjective assessment for the last 5 min"

时间 6 min 7 min 8 min 9 min 10 min
组1 3.3 2.8 3.0 2.2 2.0
组2 5.4 5.1 4.8 4.1 3.4

Fig.6

Variation of body surface temperature"

[1] 吴建松, 付明, 童兴, 等. 基于暖体假人实验的煤矿工作服热阻和湿阻测量与分析[J]. 煤矿安全, 2015,46(12):196-199.
WU Jiansong, FU Ming, TONG Xing, et al. Measurement and analysis of thermal and wet resistance of coal mine overalls based on warm body dummy experiment[J]. Coal Mine Safety, 2015,46(12):196-199.
[2] 张春堂, 管利聪. 基于SSD-MobileNet的矿工安保穿戴设备检测系统[J]. 工矿自动化, 2019,45(6):96-100.
ZHANG Chuntang, GUAN Licong. Detection system of miners' security wearable devices based on SSD-MobileNet[J]. Industrial and Mining Automation, 2019,45(6):96-100.
[3] 朱珍钰, 高亢, 李翠圆. 关于阻燃纤维的研究与发展[J]. 辽宁丝绸, 2019(4):40-42.
ZHU Zhenyu, GAO Kang, LI Cuiyuan. About the research and development of flame retardant fiber[J]. Journal of Liaoning Silk, 2019(4):40-42.
[4] 李营建, 肖丰, 余秀艳. 芳纶1313纯纺消防服面料的生产工艺[J]. 棉纺织技术, 2018,46(6):52-55.
LI Yingjian, XIAO Feng, YU Xiuyan. Production technology of aramid 1313 pure textile fabric for fire protection clothing[J]. Cotton Textile Technology, 2018,46(6):52-55.
[5] 崔晓静, 孙潜, 张华川, 等. 中国芳纶1414纤维及其复合材料的发展[J]. 塑料工业, 2017,45(9):12-14,23.
CUI Xiaojing, SUN Qian, ZHANG Huachuan, et al. Development of aramid 1414 fiber and its composites in China[J]. Plastics Industry, 2017,45(9):12-14,23.
[6] 侯豪情, 许文慧, 丁义纯. 高性能聚合物电纺纳米纤维最新进展[J]. 江西师范大学学报(自然科学版), 2018,42(6):551-564.
HOU Haoqing, XU Wenhui, DING Yichun. Recent advances in electro-spinning of high performance polymer nanofibers[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2018,42(6):551-564.
[7] 沈莉莉. 尤尼吉卡开发阻燃型PLA[J]. 合成纤维, 2005,34(8):32-32.
SHEN Lili. Development of flame-retardant PLA by unijica[J]. Synthetic Fiber in China, 2005,34(8):32-32.
[8] 李啊强, 陈奇海, 霍绍新, 等. PEEK导热性能研究进展[J]. 工程塑料应用, 2019,47(5):144-147,158.
LI Aqiang, CHEN Qihai, HUO Shaoxin, et al. Research progress of PEEK thermal conductivity[J]. Application of Engineering Plastics, 2019,47(5):144-147,158.
[9] 赵兴旺, 薛利敏, 张金利, 等. 抗静电面料的研究进展与发展前景[J]. 天津纺织科技, 2019(2):55-58.
ZHAO Xingwang, XUE Limin, ZHANG Jinli, et al. Research progress and development prospect of antistatic fabrics[J]. Tianjin Textile Science & Technology, 2019(2):55-58.
[10] 胡智文, 傅雅琴, 陈文兴. 化学镀镍涤纶抗静电纤维研究[J]. 纺织学报, 2000,21(5):45-47.
HU Zhiwen, FU Yaqin, CHEN Wenxing. Research on electroless nickel-plated polyester antistatic fiber[J]. Journal of Textiles Research, 2000,21(5):45-47.
[11] WANG Haihua, SUN Liyu, FEI Guiqiang, et al. A facile approach to fabricate waterborne nanosized polyaniline-graft-(sulfonated polyurethane) as environmental antistatic coating[J]. Journal of Applied Polymer Science, 2017,134(41):10.
[12] WANG C X, LV J C, REN Y, et al, Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement[J].Applied Surface Science, 2015(359):196-203.
[13] 徐利, 戴晋明, 昝会云. 矿工工作服研究现状及发展方向[J]. 产业用纺织品, 2013(10):1-4.
XU Li, DAI Jinming, ZAN Huiyun. The situation and development direction of miners overalls[J]. Technical Textiles, 2013(10):1-4.
[14] 王艺. 矿工防护服的模块化设计: 以煤矿为例[D]. 无锡:江南大学, 2018: 1-52.
WANG Yi. Modular design of protective clothing for miners: taking coal mine as an example[D]. Wuxi: Jiangnan University, 2018: 1-52.
[15] 李小银, 于万樵, 王立莹, 等. 一种可漂浮救生的背带式矿工工作服: 201438859[P]. 2010-04-21.
LI Xiaoyin, YU Wanqiao, WANG Liying, et al. A kind of belt miner's uniform that can float and save lives: 201438859[P]. 2010-04-21.
[16] 梁墨林. 煤矿井下瓦斯远程联网监控系统的基本要求和具体功能[J]. 煤, 2019,28(2):60,62.
LIANG Molin. Basic requirements and specific functions of remote networked monitoring system for underground gas in coal mine[J]. Coal,2019,28(2):60,62.
[17] 王英旭. 高瓦斯综采工作面瓦斯综合治理技术措施[J]. 山东煤炭科技, 2018(10):112-114.
WANG Yingxu. Technical measures for comprehensive gas control in high-gas fully mechanized mining face[J]. Shandong Coal Science and Technology, 2018(10):112-114.
[18] 钱海洪, 王鸿博, 杜金梅, 等. 基于短链含氟丙烯酸酯细乳液的棉织物拒水拒油整理[J]. 纺织学报, 2019,40(3):83-89.
QIAN Haihong, WANG Hongbo, DU Jinmei, et al. Water-repellent and oil-repellent finishing cotton fabrics based on short-chain fluoroacrylate miniemulsion[J]. Journal of Textile Research, 2019,40(3):83-89.
[19] 刘丽英, 刘林. 服装舒适性主观评价及主客观指标间的相关性研究[J]. 青岛大学学报(工程技术版), 2013,28(3):60-63,68.
LIU Liying, LIU Lin. Study on the correlation between subjective evaluation and subjective and objective indexes of clothing comfort[J]. Journal of Qingdao University (Engineering Technology Edition), 2013,28(3):60-63,68.
[20] 建信. 《煤矿安全规程执行说明(2016)》公布[J]. 建井技术, 2016,42(10):127-127.
[1] . Research progress and development trend of wearable medical monitoring clothing [J]. Journal of Textile Research, 2015, 36(06): 162-168.
[2] LUO Qin. Prototype design and usage of weft knit women′s wear [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(3): 92-95.
[3] ZHOU Jiu;Frankie Ng;SHEN Gan. One to one corresponding principle on structure design of jacquard fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(7): 4-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!