Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (12): 37-41.doi: 10.13475/j.fzxb.20200401105

• Fiber Materials • Previous Articles     Next Articles

Surface modification of basalt fiber using nano-SiO2

LIU Shuqiang, WU Jie, WU Gaihong(), YIN Xiaolong, LI Fu, ZHANG Man   

  1. College of Textile Engineering, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
  • Received:2020-04-07 Revised:2020-07-06 Online:2020-12-15 Published:2020-12-23
  • Contact: WU Gaihong E-mail:gaigai2003@126.com

Abstract:

In order to improve the interface compatibility of the basalt fiber with the matrix, coupling agent KH550 was used to modify the nano-SiO2 and the surface of the basalt fiber was modified by the modified nano-SiO2. The surface morphology and chemical structure of basalt fibers before and after modification were analyzed, and the effects of the mass fraction of nano-SiO2 on the mechanical properties, friction coefficient and moisture absorption performance of basalt fibers were studied. The results show that after nano-SiO2 surface treatment, the roughness and specific surface area of the basalt fiber surface is increased, and the friction and moisture absorption performance are increased significantly. When the nano-SiO2 mass fraction is 5%, the basalt fiber friction coefficient is increased from 0.255 to 0.280, and the moisture permeability is increased to 0.65%. Compared with the untreated basalt fiber, C—H bond appeared on the surface of the modified basalt fiber, and the intensity of the vibration peak corresponding to the Si—O—Si bond becomes stronger, increasing the polarity of the fiber surface. The tensile mechanical properties of the modified basalt fiber are also improved to some extent. With the increase of the amount of nano-SiO2, the mechanical properties of the basalt fiber increase at first and then decrease peak, and when the nano-SiO2 mass fraction is at 3%, the tensile fracture strength of basalt fiber reaches up to 40 cN/tex.

Key words: basalt fiber, high-performance fiber, nano-SiO2, coupling agent KH550, surface modification, mechanical property

CLC Number: 

  • TS102.6

Fig.1

SEM images of BF modified by different mass fraction of nano-SiO2 (×5 000)"

Fig.2

Infrared spectra of nano-SiO2, KH550/SiO2, BF and KH550/SiO2/BF"

Fig.3

Tensile fracture strength of BF modified by different mass fraction of Nano-SiO2"

Fig.4

Effect of nano-SiO2 mass fraction on friction coefficient of basalt fiber"

Fig.5

Effect of nano-SiO2 mass fraction on moisture permeability of basalt fiber"

[1] 丁宝明, 张蕾, 刘嘉麒. 中国玄武岩纤维材料产业的发展态势[J]. 中国矿业, 2019,28(10):1-5.
DING Baoming, ZHANG Lei, LIU Jiaqi. Development trend of China's basalt fiber material industry[J]. China Mining Industry, 2019,28(10):1-5.
[2] 罗益锋. 新形势下高性能纤维与复合材料的主攻方向与新进展[J]. 高科技纤维与应用, 2019,44(5):1-22.
LUO Yifeng. The main attack direction and new development of high-performance fibers and composite materials under the new situation[J]. High-Tech Fibers and Applications, 2019,44(5):1-22.
[3] 李新娥. 玄武岩纤维和织物的研究进展[J]. 纺织学报, 2010,31(1):145-152.
LI Xin'e. Research progress of basalt fiber and fabric[J]. Journal of Textile Research, 2010,31(1):145-152.
[4] 魏晨, 郭荣辉. 玄武岩纤维的性能及应用[J]. 纺织科学与工程学报, 2019,36(3):89-94.
WEI Chen, GUO Ronghui. Properties and applications of basalt fibers[J]. Journal of Textile Science & Engineering, 2019,36(3):89-94.
[5] 吴金勇, 刘丽娜, 傅深渊. 纤维增强EP复合材料摩擦学性能研究进展[J]. 工程塑料应用, 2019,47(3):136-139.
WU Jinyong, LIU Lina, FU Shenyuan. Research progress on tribological properties of fiber reinforced EP composites[J]. Application of Engineering Plastics, 2019,47(3):136-139.
[6] 霍冀川, 雷永林, 王海滨, 等. 玄武岩纤维的制备及其复合材料的研究进展[J]. 材料导报, 2006,20(1):382-385.
HUO Jichuan, LEI Yonglin, WANG Haibin, et al. Research progress in preparation of basalt fiber and its composite materials[J]. Materials Reports, 2006,20(1):382-385.
[7] 雷静, 党新安, 李建军. 玄武岩纤维的性能应用及最新进展[J]. 化工新型材料, 2007,35(3):9-11.
LEI Jing, DANG Xin'an, LI Jianjun. Performance and application of basalt fiber and its latest progress[J]. New Chemical Materials, 2007,35(3):9-11.
[8] 曾瑶, 俞科静, 钱坤. 玄武岩纤维表面改性及界面效应[J]. 材料科学与工程学报, 2019,37(4):612-618.
ZENG Yao, YU Kejing, QIAN Kun. Surface modification and interfacial effects of basalt fibers[J]. Journal of Materials Science and Engineering, 2019,37(4):612-618.
[9] 傅宏俊, 马崇启, 王瑞. 玄武岩纤维表面处理及其复合材料界面改性研究[J]. 纤维复合材料, 2007(3):11-13.
FU Hongjun, MA Chongqi, WANG Rui. Study on surface treatment of basalt fiber and interface modification of composite materials[J]. Fiber Composites, 2007(3):11-13.
[10] 靳婷婷, 申士杰, 李静, 等. 低温等离子处理对玄武岩纤维表面及复合材料性能的影响[J]. 玻璃钢/复合材料, 2015 (6):29-35.
JIN Tingting, SHEN Shijie, LI Jing, et al. Effect of low temperature plasma treatment on the surface of basalt fiber and properties of composites[J]. Glass Reinforced Plastics/Composites, 2015(6):29-35.
[11] 曹海琳, 张春红, 张志谦, 等. 玄武岩纤维表面涂层改性研究[J]. 航空材料学报, 2007,27(5):77-82.
CAO Hailin, ZHANG Chunhong, ZHANG Zhiqian, et al. Study on the surface coating modification of basalt fiber[J]. Journal of Aeronautical Materials, 2007,27(5):77-82.
[12] 毕松梅, 朱钦钦, 赵堃, 等. 等离子体改性对玄武岩/聚丙烯复合材料性能的影响[J]. 产业用纺织品, 2013,31(6):32-35.
BI Songmei, ZHU Qinqin, ZHAO Yan, et al. Effect of plasma modification on properties of basalt/polypropylene composites[J]. Technical Textiles, 2013,31(6):32-35.
[13] LEE S O, RHEE K Y, PARK S J. Influence of chemical surface treatment of basalt fibers on interlaminar shear strength and fracture toughness of epoxy-based composites[J]. Journal of Industrial and Engineering Chemistry, 2015,32:153-156.
doi: 10.1016/j.jiec.2015.08.009
[14] 宋秋霞, 刘华武, 钟智丽, 等. 硅烷偶联剂处理对玄武岩单丝拉伸性能的影响[J]. 天津工业大学学报, 2010,29(1):19-22.
SONG Qiuxia, LIU Huawu, ZHONG Zhili, et al. Effect of silane coupling agent treatment on tensile properties of basalt monofilament[J]. Journal of Tiangong University, 2010,29(1):19-22.
[15] MA Y, DI H H, YU Z X, et al. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research[J]. Applied Surface Science, 2016,36:1-10.
doi: 10.1016/0169-4332(89)90894-5
[1] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[2] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[3] YANG Yaru, SHEN Xiaojun, TANG Bolin, NIU Mei. Halogen-free flame retardant finishing of ultra-high molecular weight polyethylene fiber [J]. Journal of Textile Research, 2020, 41(11): 109-115.
[4] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[5] ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, LI Haiqiong. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber#br# [J]. Journal of Textile Research, 2020, 41(08): 9-14.
[6] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
[7] LIU Xi, WANG Dong, ZHANG Liping, LI Min, FU Shaohai. Effect of low refractive resin on structure and properties of spun-dyed viscose fibers [J]. Journal of Textile Research, 2020, 41(07): 9-14.
[8] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[9] WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14.
[10] DING Fang, REN Xuehong. Flame-retardant finishing of polyester fabrics by grafting phosphorus-nitrogen compounds [J]. Journal of Textile Research, 2020, 41(03): 100-105.
[11] CUI Yifan, HOU Wei, ZHOU Qianxi, YAN Jun, LU Yanhua, HE Tingting. Influence of silk sericin temperature sensitive hydrogel on properties of cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 74-78.
[12] ZHANG Jiao, GAO Xuefeng, WANG Yuzhou, LIU Haihui, ZHANG Xingxiang. Preparation and properties of polyamide 66/amino-functionalized multi-walled carbon nanotubes fibers [J]. Journal of Textile Research, 2019, 40(11): 1-8.
[13] YANG Fan, LIU Junhua, BIAN Angting, WANG Yanping, QIAN Qiyuan, NI Jianhua, XIA Yumin, HE Yong, WANG Yimin. Influence of heat treatment on structure and properties of thermotropic liquid crystalline polyarylate fiber [J]. Journal of Textile Research, 2019, 40(11): 9-12.
[14] WU Liwei, WANG Wei, LIN Jiahorng, JIANG Qian. Preparation and mechanical properties of aramid/ ultra-high molecular weight polyethylene fabric reinforced polyurethane sandwich composite [J]. Journal of Textile Research, 2019, 40(07): 64-70.
[15] LIU Shuping, LI Liang, LIU Rangtong, CUI Shizhong, WANG Yanting. Structure and properties of keratin film modified by carboxymethyl cellulose sodium [J]. Journal of Textile Research, 2019, 40(06): 14-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!