Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (03): 95-101.doi: 10.13475/j.fzxb.20200401607

• Textile Engineering • Previous Articles     Next Articles

Evaluation method and prediction model establishment of cooling performance of knitted fabrics

YANG Yang1, YU Xin2, ZHANG Weijing1, ZHANG Peihua1()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Institute for Frontier Materials, Deakin University, Geelong 3216, Australia
  • Received:2020-04-07 Revised:2020-12-10 Online:2021-03-15 Published:2021-03-17
  • Contact: ZHANG Peihua E-mail:phzh@dhu.edu.cn

Abstract:

There is no definite systematic characterization and test method to evaluate the cooling performance of knitted fabrics. A novel evaluation method of cooling performance of knitted fabrics was introduced. This method was characterized by the thermal transfer performance of dry fabric and the cooling performance triggered by thermal transfer, moisture diffusion and evaporation of wet fabrics. Based on the evaluation theory of thermal transfer behavior of fabrics, relevant evaluation indexes including cooling temperature, cooling temperature index and cooling capacity index were proposed. The correlation analysis of the cooling parameters and the relevant thermal comfort parameters of 34 knitted fabrics were conducted, and the prediction models of cooling performance parameters were established based on stepwise multiple regression analysis. The results show that the cooling performance of knitted fabrics are mainly linearly related their thermal resistance, water vapor resistance, diffusion radius and drying rate. The cooling capacity index can be predicted by thermal resistance, water vapor resistance and drying rate of knitted fabrics, and the cooling temperature can be predicted by thermal resistance and diffusion radius of knitted fabrics.

Key words: knitted fabric, cooling performance, prediction model of cooling performance, thermal-moist comfort, cooling capacity index

CLC Number: 

  • TS181

Fig.1

Knitting structure of knitted fabric samples. (a) Double tuck stitch; (b) Double tuck stitch (small mesh);(c) 1×1 interlock; (d) Double tuck stitch (large mesh)"

Tab.1

Specification parameters of knitted fabric"

面料
编号
编织结构 面密度/
(g·m-2)
纵密/(横列·
(5 cm)-1)
横密/(纵行·
(5 cm)-1)
厚度/
mm
F1 双罗纹 191 68 74 0.96
F2 双罗纹 191 70 74 1.00
F3 双罗纹 192 68 74 1.01
F4 双罗纹 196 70 74 1.01
F5 双罗纹 194 70 72 0.98
F6 双罗纹 197 68 74 0.99
F7 双罗纹 195 70 72 1.01
F8 双罗纹 191 70 72 0.94
F9 双罗纹 197 68 74 0.98
F10 双罗纹 196 70 72 0.99
F11 双罗纹 221 68 70 0.90
F12 双罗纹 221 70 72 0.81
F13 双罗纹 218 70 72 0.84
F14 双罗纹 221 68 72 0.83
F15 双罗纹 218 68 72 0.88
F16 双罗纹 225 68 74 0.83
F17 双罗纹 220 70 72 0.84
F18 双罗纹 223 68 72 0.84
F19 双面集圈 161 90 65 0.71
F20 双面集圈 158 94 67 0.74
F21 双面集圈 179 95 63 0.86
F22 双面集圈 190 92 65 1.06
F23 双面集圈 182 96 67 1.11
F24 双面集圈 170 95 63 0.69
F25 双面集圈 168 93 65 0.77
F26 双面集圈 169 91 65 0.91
F27 双面集圈 175 93 67 0.94
F28 双面集圈 170 92 65 0.95
F29 小网眼 127 95 64 0.63
F30 小网眼 124 93 67 0.63
F31 小网眼 129 92 66 0.68
F32 大网眼 107 94 65 0.57
F33 大网眼 109 93 67 0.59
F34 大网眼 106 95 65 0.60

Fig.2

Schematic diagram of test instrument"

Tab.2

Results of descriptive statistics analysis"

性能参数 最小值 最大值 平均值 标准偏差 偏度 偏度标准分数 峰度 峰度标准分数
透气率/(L·(m2·s)-1) 580.02 3 314.22 1 539.33 808.77 0.55 1.37 -0.86 -1.09
芯吸高度/cm 7.90 21.80 14.92 4.17 0.03 0.08 -1.10 -1.39
单向导湿指数 -161.93 835.05 237.86 249.18 0.84 2.09 0.70 0.89
扩散半径/mm 5.00 30.00 17.33 6.07 -0.42 -1.05 -0.22 -0.28
干燥速率/(mL·h-1) 0.92 2.23 1.53 0.31 0.21 0.51 0.01 0.01
热阻/(10-3m2·K·W-1) 12.25 27.74 18.37 3.95 0.56 1.39 -0.15 -0.19
湿阻/(cm2·Pa·W-1) 1.24 4.95 3.12 1.05 0.33 0.83 -0.44 -0.56
凉爽温度/℃ 5.50 7.88 6.71 0.69 -0.43 -1.06 -1.02 -1.29
凉爽能力指数/(10-3m2·K·(W·s)-1) 26.04 47.53 33.92 5.76 0.75 1.85 -0.33 -0.42
凉爽温度指数/(K·s-1) 14.35 26.19 18.68 3.18 0.75 1.85 -0.33 -0.42

Tab.3

Correlation analysis between thermal-wet parameters and cooling property"

性能参数 相关系数类型 透气率 芯吸高度 单向导湿指数 扩散半径 干燥速率 热阻 湿阻
凉爽能力指数 皮尔森相关系数 0.460* -0.282 -0.303 0.005 0.198 -0.779** 0.621**
显著性 0.017 0.106 0.082 0.979 0.262 0 0
凉爽温度 皮尔森相关系数 0.055 0.089 -0.255 0.334 0.014 -0.708** 0.378*
显著性 0.757 0.615 0.146 0.054 0.939 0 0.028

Fig.3

Linear correlation analysis results of thermal-wet performance parameters"

Tab.4

Prediction analysis and variance analysis results based on stepwise method between cooling capacity index and thermal-wet performance parameters"

模型
编号
预测分析 项目 方差分析
R2 调整
R2
标准
平方和 df 均方 F 显著
1 0.606 0.594 3.673 回归 664.38 1 664.38 49.24 0.00
残差 431.77 32 13.49
总计 1 096.15 33
2 0.731 0.714 3.085 回归 801.15 2 400.57 42.09 0.00
残差 295.01 31 9.52
总计 1 096.15 33
3 0.765 0.742 2.930 回归 838.58 3 279.53 32.56 0.00
残差 257.57 30 8.59
总计 1 096.15 33

Tab.5

Coefficient matrix of multiple linear regression model between cooling capacity index and thermal-wet performance parameters"

模型
编号
项目 非标准
化系数
标准差 标准化
系数
T 显著性
1 常量 54.803 3.043 18.012 0.000
热阻 -1.137 0.162 -0.779 -7.017 0.000
2 常量 44.404 3.749 11.845 0.000
热阻 -0.927 0.147 -0.635 -6.310 0.000
湿阻 2.097 0.553 0.381 3.791 0.001
3 常量 34.917 5.773 6.049 0.000
热阻 -0.813 0.150 -0.557 -5.422 0.000
湿阻 2.576 0.573 0.469 4.493 0.000
干燥速率 3.863 1.850 0.207 2.088 0.045

Tab.6

Prediction analysis and variance analysis results based on stepwise method between cooling temperature and thermal-wet performance parameters"

模型
编号
预测分析 项目 方差分析
R2 调整
R2
标准差 平方和 df 均方 F 显著性
1 0.501 0.486 0.496 回归 7.91 1 7.91 32.17 0.00
残差 7.82 32 0.25
总计 15.79 33
2 0.678 0.658 0.405 回归 10.71 2 5.35 32.68 0.00
残差 5.08 32 0.16
总计 15.79 33

Tab.7

Coefficient matrix of multiple linear regression model based on stepwise method between cooling temperature and thermal-wet performance parameters"

模型
编号
项目 非标准
化系数
标准差 标准化
系数
T 显著性
1 常量 8.987 0.411 21.875 0.000
热阻 -0.124 0.022 -0.708 -5.672 0.000
2 常量 8.311 0.373 22.274 0.000
热阻 -0.133 0.018 -0.758 -7.390 0.000
扩散半径 0.048 0.012 0.424 4.129 0.000
[1] GUO S M, YU D M, LIU Y T, et al. Design and development of cool multifunctional composite high-grade fabrics[J]. Applied Mechanics and Materials, 2014,633:476-479.
[2] XU D, CUI P. Simultaneous determination of thickness, thermal conductivity and porosity in textile material design[J]. Journal of Inverse and Ⅲ-posed Problems, 2016,24(1):59-66.
[3] 王欢, 李艳梅. 适应高湿热环境的导湿快干服装[J]. 毛纺科技, 2019,47(4):57-61.
WANG Huan, LI Yanmei. Fast-dry clothing that is suitable for high humidity and heat environment[J]. Wool Textile Journal, 2019,47(4):57-61.
[4] 苏云, 王云仪, 李俊. 消防服衣下空气层热传递机制研究进展[J]. 纺织学报, 2016,37(1):167-172.
SU Yun, WANG Yunyi, LI Jun. Research progress of heat transfer mechanism of air gap under firefighter protective clothing[J]. Journal of Textile Research, 2016,37(1):167-172.
[5] WATKINS D A, SLATER K. The moisture-vapour permeability of textile fabrics[J]. Journal of The Textile Institute, 1981,72(1):11-18.
[6] SUPUREN G, OGLAKCIOGLU N, OZDIL N, et al. Moisture management and thermal absorptivity properties of double-face knitted fabrics[J]. Textile Research Journal, 2011,81(13):1320-1330.
[7] ZHOU H, WANG H, NIU H, et al. One-way water-transport cotton fabrics with enhanced cooling effect[J]. Advanced Materials Interfaces, 2016,3(17):1-6.
[8] FUKAZAWA T, HAVENITH G. Differences in comfort perception in relation to local and whole body skin wittedness[J]. European Journal of Applied Physiology, 2009,106(1):15-24.
doi: 10.1007/s00421-009-0983-z pmid: 19159949
[9] 王勃翔, 刘丽, 路艳华, 等. 互穿聚合物网络温敏凝胶对棉织物液态水分传递的影响[J]. 纺织学报, 2018,39(11):79-84.
WANG Boxiang, LIU Li, LU Yanhua, et al. Influence of interpenetrating polymer networks thermosensitive gel on liquid moisture transfer of cotton fabric[J]. Journal of Textile Research, 2018,39(11):79-84.
[10] 陈萌, 朱方龙. 热辐射下织物内水分干燥实验及其动力学研究[J]. 纺织学报, 2018,39(8):52-57.
CHEN Meng, ZHU Fanglong. Drying experiment and kinetics of wetted fabrics exposed to thermal radiation[J]. Journal of Textile Research, 2018,39(8):52-57.
[11] CHEN Q, TANG K P, MA P, et al. Evaluation of water absorption and transport properties of weft knitted polyester fabrics by spontaneous uptake water transport tester and conventional test methods[J]. Fibers and Polymers, 2016,17(8):1287-1295.
doi: 10.1007/s12221-016-6454-3
[12] 张腾飞, 石禄丹, 胡红梅, 等. 生物基聚酰胺 56 低聚物改性聚酯的合成及其表征[J]. 纺织学报, 2019,40(5):1-7.
ZHANG Tengfei, SHI Ludan, HU Hongmei, et al. Synjournal and characterization of bio-based polyamide 56 oligomer modified polyester[J]. Journal of Textile Research, 2019,40(5):1-7.
doi: 10.1177/004051757004000101
[13] 苏利涛, 林娜, 刘琳, 等. 浅议舒适性个体安全防护面料的研发方向[J]. 棉纺织技术, 2020,48(1):82-84.
SU Litao, LIN Na, LIU Lin, et al. Discussion on the research and development direction of comfortable individual safety protective fabric[J]. Cotton Textile Technology, 2020,48(1):82-84.
[14] WONG S C, LIAO W S. Visualization experiments on flat-plate heat pipes with composite mesh-groove wick at different tilt angles[J]. International Journal of Heat and Mass Transfer, 2018,123:839-847.
doi: 10.1016/j.ijheatmasstransfer.2018.03.031
[15] FAN J, CHENG X, WEN X, et al. An improved model of heat and moisture transfer with phase change and mobile condensates in fibrous insulation and comparison with experimental results[J]. International Journal of Heat and Mass Transfer, 2004,47(10/11):2343-2352.
doi: 10.1016/j.ijheatmasstransfer.2003.10.033
[16] HU J Y, HES L, LI Y, et al. Fabric touch tester: integrated evaluation of thermal-mechanical sensory properties of polymeric materials[J]. Polymer Testing, 2006,25(8):1081-1090.
doi: 10.1016/j.polymertesting.2006.07.008
[17] CIESIELAKA W I, DE M G, VAN L. Dry heat transfer from the skin surface into textiles: subjective and objective measurement of thermal haptic perception of textiles: preliminary studies[J]. Journal of The Textile Institute, 2016,107(4):445-455.
doi: 10.1080/00405000.2015.1034938
[18] YANG Y, ZHANG W J, ZHANG P H. Evaluation method for the hygroscopic and cooling function of knitted fabrics[J]. Textile Research Journal, 2019,89(23/24):5024-5040.
doi: 10.1177/0040517519846069
[19] YAO B G, LI Y, HU J Y, et al. An improved test method for characterizing the dynamic liquid moisture transfer in porous polymeric materials[J]. Polymer Testing, 2006,25(5):677-689.
doi: 10.1016/j.polymertesting.2006.03.014
[20] 杨绍芳, 葛淼, 潘池钦, 等. 基于分类回归树的中国健康成年男性血清CA19-9参考值冷热点联合空间分布[J]. 西安交通大学学报(医学版), 2019,40(4):635-639.
YANG Shaofang, GE Miao, PAN Chiqin, et al. Spatial distribution combined cold and hotspots of China's healthy adult male serum CA19-9 reference value based on classification and regression tree[J]. Journal of Xi'an Jiaotong University (Medical Sciences Edition), 2019,40(4):635-639.
[21] 卢璐, 张廷新. 基于回归分析的我国外汇储备规模影响因素研究[J]. 聊城大学学报(自然科学版), 2014,27(2):23-37.
LU Lu, ZHANG Tingxin. A study on the influencing factors of China's foreign exchange reserve scale based on regression analysis[J]. Journal of Liaocheng University (Natural Science Edition), 2014,27(2):23-37.
[1] ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109.
[2] LÜ Changliang, HAO Zhiyuan, CHEN Huimin, ZHANG Huile, YUE Xiaoli. Finite element analysis of loop shape in weft knitted fabrics with small deformation based on homogenization theory [J]. Journal of Textile Research, 2021, 42(03): 21-26.
[3] DING Zihan, QIU Hua. Preparation and performance of nano-silica modified water-based polyurethane waterproof and moisture-permeable coated fabrics [J]. Journal of Textile Research, 2021, 42(03): 130-135.
[4] LIU Lidong, LI Xinrong, LIU Hanbang, LI Dandan. Electrostatic adsorption model based on characteristics of weft knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 161-168.
[5] LIU Libin, LÜ Wangyang, CHEN Wenxing. Catalytic degradation of lignin and lignin model compound by copper complexes in bleaching cotton knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 1-8.
[6] ZHANG Tengjialu, WU Wei, ZHONG Yi, MAO Zhiping, XU Hong. Effect of open width pretreatment on dyeing property of cotton knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 9-13.
[7] SUN Yabo, LI Lijun, MA Chongqi, WU Zhaonan, QIN Yu. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS [J]. Journal of Textile Research, 2021, 42(02): 107-112.
[8] LIU Haisang, JIANG Gaoming, DONG Zhijia. Simulation and virtual display for few-guide bar yarn dyed fabric based Web [J]. Journal of Textile Research, 2021, 42(02): 87-92.
[9] LI Xintong, GAO Zhe, GU Hongyang, CONG Honglian. Study on stiffness style of knitted suit fabrics [J]. Journal of Textile Research, 2020, 41(11): 53-58.
[10] CHEN Jiaying, TIAN Xu, PENG Jingjing, FANG Tong, GAO Weihong. Fabrication of structural colors for knitted fabrics [J]. Journal of Textile Research, 2020, 41(07): 117-121.
[11] LIANG Jialu, CONG Honglian, ZHANG Aijun. Technical design model of weft-knitted two-side jacquard fabric [J]. Journal of Textile Research, 2020, 41(01): 69-74.
[12] WANG Xiaoyan, DU Jinmei, PENG Lingqi, JING Lili, XU Changhai. Alkali reduction and one-bath-one-step process for dyeing polyester knitted fabric [J]. Journal of Textile Research, 2020, 41(01): 80-87.
[13] WANG Qiuping, MAO Zhiping, ZHONG Yi, XU Hong, ZHANG Linping. Influence of knitted deformation on dyeing in flat pad dyeing [J]. Journal of Textile Research, 2019, 40(11): 94-99.
[14] YANG Enhui, QIU Hua, DAI Wenjie. Three-dimensional modeling and analysis of knitted fabric based on hexagonal mesh structure [J]. Journal of Textile Research, 2019, 40(11): 69-74.
[15] HE Qingqing, XU Hong, MAO Zhiping, ZHANG Linping, ZHONG Yi, LÜ Jingchun. Preparation of high-electrical conductivity polypyrrole-coated fabrics [J]. Journal of Textile Research, 2019, 40(10): 113-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!