Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (12): 13-20.doi: 10.13475/j.fzxb.20200402308

• Fiber Materials • Previous Articles     Next Articles

Preparation and performance of flexible sensor made from polyvinylidene fluoride/FeCl3 composite fibrous membranes

ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong()   

  1. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
  • Received:2020-04-09 Revised:2020-08-18 Online:2020-12-15 Published:2020-12-23
  • Contact: LI Rong E-mail:lirong@dhu.edu.cn

Abstract:

In order to prepare a portable flexible sensor with high sensitivity, iron (III) chloride hexahydrate(FeCl3·6H2O)was added to polyvinylidene fluoride(PVDF) to prepare PVDF/FeCl3 composite fibrous membranes by electrospinning and hence the sensor. Scanning electron microscope, X-ray diffraction, Fourier transform infrared spectrometer, contact angle analyzer were used to characterize the morphology, structure, wettability, mechanical properties and piezoelectricity of the fibrous membranes. The test results show that an appropriate amount of FeCl3·6H2O could increase the relative content of β crystal type in the fibrous membrane and thus effectively improve the piezoelectric output of the sensor. However, too much FeCl3·6H2O would inhibit the formation of the β crystal type. When the mass fraction of FeCl3·6H2O is up to 0.5%, the ratio of β crystal type in the fiber crystal structure reaches a maximum of 68.74%, and the maximum output voltage reaches about 5 V. The response time of the sensor to the excitation process is up to 0.025 s. The response time is basically the same under different excitation frequencies, and the sensor shows higher piezoelectric output at dynamic high-frequency.

Key words: polyvinylidene fluoride, iron (III) chloride hexahydrate, flexible sensor, piezoelectricity, electrospinning

CLC Number: 

  • TP212.9

Fig.1

Schematic diagram of flexible sensor"

Fig.2

SEM images of PVDF/FeCl3 composite fibrous membranes with different mass fraction of FeCl3·6H2O(×5 000). (a) Pure PVDF fibrous membrane; (b) 0.1%; (c) 0.3%; (d) 0.5%; (e) 0.8%; (f)1.0%"

Fig.3

Diameter distribution of PVDF/FeCl3 composite fibrous membranes with different mass fraction of FeCl3·6H2O. (a) Pure PVDF fibrous membrane; (b) 0.1%; (c) 0.3%; (d) 0.5%; (e) 0.8%; (f) 1.0%"

Fig.4

XRD (a) and FT-IR (b) spectra of PVDF/FeCl3 composite fibrous membranes with different mass fraction of FeCl3·6H2O"

Tab.1

Relative contents of crystal types in PVDF/FeCl3 composite fibrous membranes%"

FeCl3·6H2O质量分数 β晶型的相对含量
纯PVDF纤维膜 50.48
0.1 60.94
0.3 61.82
0.5 68.74
0.8 66.25
1.0 59.57

Fig.5

Contact angles of PVDF/FeCl3 composite fibrous membranes with different mass fraction of FeCl3·6H2O. (a) Pure PVDF fibrous membrane; (b) 0.1%; (c) 0.3%; (d) 0.5%; (e) 0.8%; (f) 1.0%"

Fig.6

Stress-strain curves of PVDF/FeCl3 composite fibrous membranes with different mass fraction of FeCl3·6H2O"

Tab.2

Mechanical properties of PVDF/FeCl3 composite fibrous membranes"

FeCl3·6H2O质量分数/% 断裂应力/MPa 断裂伸长率/%
纯PVDF纤维膜 0.929 112.796
0.1 1.719 98.146
0.3 2.923 103.963
0.5 3.378 131.606
0.8 3.952 170.713
1.0 4.037 141.413

Fig.7

Piezoelectric responses curves of PVDF/FeCl3 composite fibrous membranes sensors with different mass fraction of FeCl3·6H2O"

Fig.8

Piezoelectric response curves of PVDF/FeCl3 composite fibrous membranes sensor at different excitation frequencies"

Fig.9

Output voltage of PVDF/FeCl3 composite fibrous membranes sensor at different excitation frequencies"

Fig.10

Partial amplification of piezoelectric response curve of PVDF/FeCl3 composite fibrous membranes sensor at different excitation frequencies"

[1] NAG A, MUKHOPADHYAY S C, KOSEL J. Wearable flexible sensors: a review[J]. IEEE Sensors Journal, 2017,17(13):3949-3960.
doi: 10.1109/JSEN.2017.2705700
[2] GULLAPALLI H, VEMURU V S M, KUMAR A, et al. Flexible piezoelectric ZnO-paper nanocomposite strain sensor[J]. Small, 2010,6(15):1641-1646.
pmid: 20623526
[3] PANDEY S, GOSWAMI G K, NANDA K K. Nanocomposite based flexible ultrasensitive resistive gas sensor for chemical reactions studies[J]. Scientific Reports, 2013,3(7):132-136.
[4] LEI K F, LEE K F, LEE M Y. Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement[J]. Microelectronic Engineering, 2012,99(78):1-5.
doi: 10.1016/j.mee.2012.06.005
[5] 沙永忠, 姜宏伟, 李盘文. 柔性压电传感器的设计[J]. 测控技术, 2011,30(3):1-4.
SHA Yongzhong, JIANG Hongwei, LI Panwen. Flexible piezoelectric sensor design[J]. Measurement and Control Technology, 2011,30(3):1-4.
[6] MARUTAKE M. The days when piezoelectric PVDF was discovered[J]. Ferroelectrics, 1995,171(1):5-6.
doi: 10.1080/00150199508018416
[7] KIM W J, HAN M H, SHIN Y H, et al. First-principles study of the α-β phase transition of ferroelectric poly(vinylidene difluoride): observation of multiple transition pathways[J]. The Journal of Physical Chemistry B, 2016,120(12):3240-3249.
doi: 10.1021/acs.jpcb.6b00881 pmid: 26937953
[8] KANG S B, WON S H, IM M J, et al. Enhanced piezoresponse of highly aligned electrospun poly(vinylidene fluoride) nanofibers[J]. Nanotechnology, 2017,28(39):31-35.
[9] LIU Z H, PAN C T, LIN L W, et al. Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning[J]. Sensors and Actuators A: Physical, 2013,193:13-24.
doi: 10.1016/j.sna.2013.01.007
[10] YU B, MAO M, YU H, et al. Enhanced piezoelectric performance of electrospun polyvinylidene fluoride doped with inorganic salts[J]. Macromolecular Materials and Engineering, 2017,302(11):890-902.
[11] DHAKRAS D, BORKAR V, OGALE S, et al. Enhanced piezoresponse of electrospun PVDF mats with a touch of nickel chloride hexahydrate salt[J]. Nanoscale, 2012,4(3):752-756.
pmid: 22234432
[12] SINGH V, SINGH B. Fabrication of PVDF-transition metal dichalcogenides based flexible piezoelectric nanogenerator for energy harvesting applications[J]. Materials Today: Proceedings, 2020,28:282-285.
doi: 10.1016/j.matpr.2020.02.073
[13] MOKHTARI F, SHAMSHIRSAZ M, LATIFI M. Investigation of β phase formation in piezoelectric response of electrospun polyvinylidene fluoride nanofibers: LiCl additive and increasing fibers ten-sion[J]. Polymer Engineering & Science, 2016,56(1):61-70.
doi: 10.1002/pen.24192
[14] 朱金海. PVDF压电薄膜及其传感器的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 3.
ZHU Jinhai. Preparation and performance study of PVDF piezoelectric film and sensor[D]. Harbin: Harbin Institute of Technology, 2011: 3.
[15] 梁园园, 黄庆林, 胡棚, 等. 静电直写聚偏氟乙烯纤维膜结构设计及应用[J]. 高分子材料科学与工程, 2020,36(7):1-12.
LIANG Yuanyuan, HUANG Qinglin, HU Peng, et al. Structure design and application of polyvinylidene fluoride fibrous membrane by electrostatic direct-writing[J]. Polymer Materials Science & Engineering, 2020,36(7):1-12.
[16] ANGAMMANA C J, JAYARAM S H. Analysis of the effects of solution conductivity on electrospinning process and fiber morphology[J]. IEEE Transactions on Industry Applications, 2011,47(3):1109-1117.
doi: 10.1109/TIA.2011.2127431
[1] YU Jia, XIN Binjie, ZHUO Tingting, ZHOU Xi. Preparation and characterization of Cu/polypyrrole-coated wool fabrics for high electrical conductivity [J]. Journal of Textile Research, 2021, 42(01): 112-117.
[2] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[3] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[4] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[5] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[6] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[7] WANG Liyuan, KANG Weimin, ZHUANG Xupin, JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[8] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[9] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[10] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[11] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[12] WU Hong, LIU Chengkun, MAO Xue, YANG Zhi, CHEN Meiyu. Research progress in preparation and application of flexible zirconia nanofibers by electrospinning [J]. Journal of Textile Research, 2020, 41(07): 167-173.
[13] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots/polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[14] HAO Zhifen, XU Naiku, FENG Yan, DUAN Mengxin, XIAO Changfa. Preparation of fibrous membrane by blending polymethacrylate with polyacrylate and its oil/water separation property [J]. Journal of Textile Research, 2020, 41(06): 21-26.
[15] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!