Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (05): 168-177.doi: 10.13475/j.fzxb.20200402510
• Comprehensive Review • Previous Articles Next Articles
TANG Jian1, YAN Tao1,2(), PAN Zhijuan1,2
CLC Number:
[1] |
LI X, HU H, HUA T, et al. Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors[J]. Nano Research, 2018,11(11):5799-5811.
doi: 10.1007/s12274-018-2043-7 |
[2] | TANG Z, JIA S, WANG F, et al. Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors[J]. ACS Applied Materials & Interfaces, 2018,10(7):6624-6635. |
[3] |
ZHENG Q, LEE J H, SHEN X, et al. Graphene-based wearable piezoresistive physical sensors[J]. Materials Today, 2020,36:158-179.
doi: 10.1016/j.mattod.2019.12.004 |
[4] |
ZHAO M, LI D, HUANG J, et al. A mu.pngunctional and highly stretchable electronic device based on silver nanowire/wrap yarn composite for a wearable strain sensor and heater[J]. Journal of Materials Chemistry C, 2019,7(43):13468-13476.
doi: 10.1039/C9TC04252K |
[5] |
YAN T, WANG Z, PAN Z J. Flexible strain sensors fabricated using carbon-based nanomaterials: a review[J]. Current Opinion in Solid State and Materials Science, 2018,22(6):213-228.
doi: 10.1016/j.cossms.2018.11.001 |
[6] | ZHU G J, REN P G, GUO H, et al. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires[J]. ACS Applied Materials & Interfaces, 2019,11(26):23649-23658. |
[7] | 张辉. 本征导电纤维集合体的电-力学性能及其作为应变、压力传感器的性能分析[D]. 上海:东华大学, 2006: 2-3. |
ZHANG Hui. Electromechanical properties of intrinsically conductive fiber assembles, its textile structure and applications as strain and pressure sensors[D]. Shanghai: Donghua University, 2006: 2-3. | |
[8] | CHRIST J F, ALIHEIDARI N, AMELI A, et al. 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites[J]. Materials & Design, 2017,131:394-401. |
[9] |
MATTMANN C, CLEMENS F, TROSTER G. Sensor for measuring strain in textile[J]. Sensors (Basel), 2008,8(6):3719-3732.
doi: 10.3390/s8063719 |
[10] |
LEE S, SHIN S, LEE S, et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics[J]. Advanced Functional Materials, 2015,25(21):3114-3121.
doi: 10.1002/adfm.v25.21 |
[11] | SEYEDIN S, RAZAL J M, INNIS P C, et al. Knitted strain sensor textiles of highly conductive all-polymeric fibers[J]. ACS Applied Materials & Interfaces, 2015,7(38):21150-21158. |
[12] | LI H, DU Z. Preparation of a highly sensitive and stretchable strain sensor of MXene/silver nanocomposite-based yarn and wearable applications[J]. ACS Applied Materials & Interfaces, 2019,11(49):45930-45938. |
[13] |
YUE X, JIA Y, WANG X, et al. Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring[J]. Composites Science and Technology, 2020,189:108038.
doi: 10.1016/j.compscitech.2020.108038 |
[14] |
SON W, KIM K B, LEE S, et al. Ecoflex-passivated graphene-yarn composite for a highly conductive and stretchable strain sensor[J]. Journal of Nanoscience and Nanotechnology, 2019,19(10):6690-6695.
doi: 10.1166/jnn.2019.17097 |
[15] | PARK J J, HYUN W J, MUN S C, et al. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring[J]. ACS Applied Materials & Interfaces, 2015,7(11):6317-6324. |
[16] | WU X, HAN Y, ZHANG X, et al. Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer @polyurethane yarn for tiny motion monitoring[J]. ACS Applied Materials & Interfaces, 2016,8(15):9936-9945. |
[17] |
BAUTISTA J R, POTSCHKE P, BRUNIG H, et al. Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning[J]. Polymer, 2016,82:181-189.
doi: 10.1016/j.polymer.2015.11.030 |
[18] |
WANG X, SUN H, YUE X, et al. A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring[J]. Composites Science and Technology, 2018,168:126-132.
doi: 10.1016/j.compscitech.2018.09.006 |
[19] |
LANGLEY D, GIUSTI G, MAYOUSSE C, et al. Flexible transparent conductive materials based on silver nanowire networks: a review[J]. Nanotechnology, 2013,24(45):452001.
doi: 10.1088/0957-4484/24/45/452001 |
[20] | YEE M J, MUBARAK N M, ABDULLAH E C, et al. Carbon nanomaterials based films for strain sensing application:a review[J]. Nano-Structures & Nano-Objects, 2019,18:100312. |
[21] |
WANG X, MENG S, TEBYETEKERWA M, et al. Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber[J]. Composites Part A: Applied Science and Manufacturing, 2018,105:291-299.
doi: 10.1016/j.compositesa.2017.11.027 |
[22] |
LI W Y, ZHOU Y F, WANG Y h, et al. Highly stretchable and sensitive SBS/graphene composite fiber for strain sensors[J]. Macromolecular Materials and Engineering, 2020,305(3):1900736.
doi: 10.1002/mame.v305.3 |
[23] |
YOU X, YANG J S, WANG M M, et al. Graphene-based fiber sensors with high stretchability and sensitivity by direct ink extrusion[J]. 2D Materials, 2020,7:015025.
doi: 10.1088/2053-1583/ab559f |
[24] | EOM J, JAISUTTI R, LEE H, et al. Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers[J]. ACS Applied Materials & Interfaces, 2017,9(11):10190-10197. |
[25] |
SEYEDIN M Z, RAZAL J M, INNIS P C, et al. Strain-responsive polyurethane/PEDOT:PSS elastomeric composite fibers with high electrical conductivity[J]. Advanced Functional Materials, 2014,24(20):2957-2966.
doi: 10.1002/adfm.v24.20 |
[26] |
SEYEDIN S, MORADI S, SINGH C, et al. Continuous production of stretchable conductive mu.pngilaments in kilometer scale enables facile knitting of wearable strain sensing textiles[J]. Applied Materials Today, 2018,11:255-263.
doi: 10.1016/j.apmt.2018.02.012 |
[27] |
CHENG Y, WANG R, SUN J, et al. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion[J]. Advanced Materials, 2015,27(45):7365-7371.
doi: 10.1002/adma.201503558 |
[28] |
LI X, HUA T, XU B. Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core[J]. Carbon, 2017,118:686-698.
doi: 10.1016/j.carbon.2017.04.002 |
[29] | NEJAD H R, PUNJIYA M P, SONKUSALE S. Washable thread based strain sensor for smart textile[C]// 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). Kaohsiung: Institute of Electrical and Electronics Engineers, 2017: 2167-0021. |
[30] |
CHEN S, LOU Z, CHEN D, et al. Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves[J]. Advanced Materials Technologies, 2016,1(7):1600136.
doi: 10.1002/admt.201600136 |
[31] | ZHANG M, WANG C, WANG Q, et al. Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors[J]. ACS Applied Materials & Interfaces, 2016,8(32):20894-20899. |
[32] |
FOROUGHI J, SPINKS G M, AZIZ S, et al. Knitted carbon-nanotube-sheath/spandex-core elastomeric yarns for a.pngicial muscles and strain sensing[J]. ACS Nano, 2016,10(10):9129-9135.
doi: 10.1021/acsnano.6b04125 |
[33] |
YU Y, ZHAI Y, YUN Z, et al. Ultra-stretchable porous fiber-shaped strain sensor with exponential response in full sensing range and excellent anti-interference ability toward buckling, torsion, temperature, and humidity[J]. Advanced Electronic Materials, 2019,5(10):1900538.
doi: 10.1002/aelm.v5.10 |
[34] |
LI Y, ZHOU B, ZHENG G, et al. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing[J]. Journal of Materials Chemistry C, 2018,6(9):2258-2269.
doi: 10.1039/C7TC04959E |
[35] | SUN H, DAI K, ZHAI W, et al. A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure[J]. ACS Applied Materials & Interfaces, 2019,11(39):36052-36062. |
[36] |
PAN J, HAO B, SONG W, et al. Highly sensitive and durable wearable strain sensors from a core-sheath nanocomposite yarn[J]. Composites Part B: Engineering, 2020,183:107683.
doi: 10.1016/j.compositesb.2019.107683 |
[37] | ZHONG W, LIU C, XIANG C, et al. Continuously producible ultrasensitive wearable strain sensor assembled with three-dimensional interpenetrating Ag nanowires/polyolefin elastomer nanofibrous composite yarn[J]. ACS Applied Materials & Interfaces, 2017,9(48):42058-42066. |
[38] | CAI G, YANG M, PAN J, et al. Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications[J]. ACS Applied Materials & Interfaces, 2018,10(38):32726-32735. |
[39] | DUAN Z, JIANG Y, WANG S, et al. Inspiration from daily goods: a low-cost, facilely fabricated, and environment-friendly strain sensor based on common carbon ink and elastic core-spun yarn[J]. ACS Sustainable Chemistry & Engineering, 2019,7(20):17474-17481. |
[40] | SOURI H, BHATTACHARYYA D. Wearable strain sensors based on electrically conductive natural fiber yarns[J]. Materials & Design, 2018,154:217-227. |
[41] | WANG Z, HUANG Y, SUN J, et al. Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection[J]. ACS Applied Materials & Interfaces, 2016,8(37):24837-24843. |
[42] |
ZHANG R, DENG H, VAKENCA R, et al. Carbon nanotube polymer coatings for textile yarns with good strain sensing capability[J]. Sensors and Actuators A: Physical, 2012,179:83-91.
doi: 10.1016/j.sna.2012.03.029 |
[43] |
HUANG Y, ZHAO Y, WANG Y, et al. Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions[J]. Smart Materials and Structures, 2018,27(3):035013.
doi: 10.1088/1361-665X/aaaba0 |
[44] |
DING L, XUAN S, FENG J, et al. Magnetic/conductive composite fibre: a mu.pngunctional strain sensor with magnetically driven property[J]. Composites Part A: Applied Science and Manufacturing, 2017,100:97-105.
doi: 10.1016/j.compositesa.2017.04.025 |
[45] | PAN J, YANG M, LUO L, et al. Stretchable and highly sensitive braided composite yarn @polydopamine @polypyrrole for wearable applications[J]. ACS Applied Materials & Interfaces, 2019,11(7):7338-7348. |
[46] |
HONG J H, PAN Z J, WANG Z, et al. A large-strain weft-knitted sensor fabricated by conductive UHMWPE/PANI composite yarns[J]. Sensors and Actuators A: Physical, 2016,238:307-316.
doi: 10.1016/j.sna.2015.12.028 |
[47] |
ZHAO H, ZHANG Y, BRADFORD P D, et al. Carbon nanotube yarn strain sensors[J]. Nanotechnology, 2010,21(30):305502.
doi: 10.1088/0957-4484/21/30/305502 |
[48] |
LI W, XU F, LIU W, et al. Flexible strain sensor based on aerogel-spun carbon nanotube yarn with a core-sheath structure[J]. Composites Part A: Applied Science and Manufacturing, 2018,108:107-113.
doi: 10.1016/j.compositesa.2018.02.024 |
[49] |
RYU S, LEE P, CHOU J B, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion[J]. ACS Nano, 2015,9(6):5929-5936.
doi: 10.1021/acsnano.5b00599 |
[50] |
LIU F, DONG Y, SHI R, et al. Continuous graphene fibers prepared by liquid crystal spinning as strain sensors for monitoring vital signs[J]. Materials Today Communications, 2020,24:100909.
doi: 10.1016/j.mtcomm.2020.100909 |
[51] |
WANG X, QIU Y, CAO W, et al. Highly stretchable and conductive core-sheath chemical vapor deposition graphene fibers and their applications in safe strain sensors[J]. Chemistry of Materials, 2015,27(20):6969-6975.
doi: 10.1021/acs.chemmater.5b02098 |
[52] |
NAKAMURA A, HAMANISHI T, KAWAKAMI S, et al. A piezo-resistive graphene strain sensor with a hollow cylindrical geometry[J]. Materials Science and Engineering: B, 2017,219:20-27.
doi: 10.1016/j.mseb.2017.02.012 |
[53] | YAN T, WANG Z, WANG Y Q, et al. Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors[J]. Materials & Design, 2018,143:214-223. |
[54] |
YAN T, ZHOU H, NIU H, et al. Highly sensitive detection of subtle movement using a flexible strain sensor from helically wrapped carbon yarns[J]. Journal of Materials Chemistry C, 2019,7(32):10049-10058.
doi: 10.1039/C9TC03065D |
[1] | ZHANG Runke, LÜ Wangyang, CHEN Wenxing. Preparation and electrochemical properties of carbon fiber fabric sensors co-modified by cobalt phthalocyanine and carbon nanotubes [J]. Journal of Textile Research, 2021, 42(04): 121-126. |
[2] | ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49. |
[3] | JIANG Zhaohui, LI Yonggui, YANG Zitao, GUO Zengge, ZHANG Zhanqi, QI Yuanzhang, JIN Jian. Research progress in graphene/polymer composite fibers and textiles [J]. Journal of Textile Research, 2021, 42(03): 175-180. |
[4] | LOU Yaya, WANG Jing, DONG Yanchao, WANG Chunmei. Preparation and decolorization of rayon based zeoliticimidazolate framework functional material [J]. Journal of Textile Research, 2021, 42(02): 142-147. |
[5] | HU Jing, ZHANG Kaiwei, LI Ranran, LIN Jinyou, LIU Yuqing. Preparation of flax layered nano-cellulose and properties of its reinforced thermoelectric composites [J]. Journal of Textile Research, 2021, 42(02): 47-52. |
[6] | MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121. |
[7] | LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107. |
[8] | PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7. |
[9] | ZHAO Zhiqi, LI Qiujin, SUN Yuejing, GONG Jixian, LI Zheng, ZHANG Jianfei. Application of magnetic-graphene oxide/poly(allylamine hydrochloride) microcapsules for adsorption of dyes [J]. Journal of Textile Research, 2020, 41(07): 109-116. |
[10] | WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots/polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13. |
[11] | LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173. |
[12] | WU Yingxin, HU Chengye, ZHOU Xiaoya, HAN Xiao, HONG Jianhan, GIL Ignacio. Strain sensing property of flexible wearable spandex/polyaniline/polyurethane composites [J]. Journal of Textile Research, 2020, 41(04): 21-25. |
[13] | GAO Shan, LU Yehu, ZHANG Desuo, WU Lei, WANG Laili. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(04): 117-122. |
[14] | WANG Jiankun, JIANG Xiaodong, GUO Jing, YANG Lianhe. Research progress of functionalized graphene oxide adsorption materials [J]. Journal of Textile Research, 2020, 41(04): 167-173. |
[15] | MA Junzhi, WANG Dong, FU Shaohai. Preparation and properties of flame-retardant viscose fiber/dithiopyrophosphate incorporated with graphene oxide [J]. Journal of Textile Research, 2020, 41(03): 15-19. |
|