Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (05): 168-177.doi: 10.13475/j.fzxb.20200402510

• Comprehensive Review • Previous Articles     Next Articles

Research progress of flexible strain sensors based on conductive composite fibers

TANG Jian1, YAN Tao1,2(), PAN Zhijuan1,2   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2020-04-10 Revised:2020-12-30 Online:2021-05-15 Published:2021-05-20
  • Contact: YAN Tao E-mail:yantao@suda.edu.cn

Abstract:

In order to promote the application of conductive composite fibers in the field of flexible strain sensors, the fabricating methods from the combination of the conductive material and the flexible matrix are reviewed. The flexible strain sensors are divided into 3 types, i.e. the conductive material/flexible matrix uniform composite fibers, the flexible fiber coated with a conductive material, and coated the conductive fibers using a flexible matrix. On this basis, the performance of these 3 types of conductive composite fiber sensors are compared and analyzed, and the sensing performance of various conductive networks are summarized. It is found that the strain property and sensitivity of the sensors are determined by the deformation behavior of fibers and the piezoresistive effect of the conductive network, that the interface interaction between the conductive material and the flexible matrix is the key factor to affect the stability and durability of the sensor, and that the fiber and fiber assembly with composite structures and multiple conducting network structures are conductive to the development of high-performance sensor. The application and development trend of conductive fiber flexible strain sensor are described, and the future research directions are put forward.

Key words: conductive composite fiber, flexible strain sensor, conductive network, sensing performance, graphene, carbon nanotubes

CLC Number: 

  • TM242

Tab.1

Property of strain sensor based on conductive material/flexible matrix uniform composite fiber"

材料 制备方法 渗透阈
值/%
电导率/
(S·cm-1)
最大拉伸
应变/%
GF值(拉伸应变范围) 循环次数(循环
拉伸应变)
响应时间/ms 参考
文献
MWNT/Ecoflex 同轴湿法纺丝 0.74 300 -0.063(<25%)
0.68(50%~100%)
1 378(<300%)
10 000(100%) 300 [2]
MWNT/TPU 3D打印 65 176 [8]
CB/TPE 挤出纺丝 80 20 3 800(80%) [9]
AgNW+AgNP/SBS 湿法纺丝 2 450 100 15 [10]
PEDOT:PSS/TPU 湿法纺丝+针织 9.4 160 -1 500(100%) [11]
CB/TPU 同轴湿法纺丝 200 28 084 11 000(60%) 200 [13]
MWNT/PC 熔融纺丝 0.5 1.5 16(<1.8%) [17]
MWNT/TPU 湿法纺丝 320 22.2(<160%)
97.1(160%~320%)
200 [18]
GR/SBS 湿法纺丝 2.7 110 160(<50%)
2 546(<100%)
[21]
GR/SBS 湿法纺丝 100 55.92(0~40%)
1 591.51(40%~73%)
10 083.98(73%~100%)
2 100(20%) [22]
GR/PDMS 挤出纺丝 100 335(100%)
65(6%)
600(6%) [23]
PEDOT:PSS/TPU 湿法纺丝 2.9 25 260 [25]
PEDOT:PSS/TPU 湿法纺丝 5.4 200 1 500(<200%)
350(<100%)
[26]

Tab.2

Property of strain sensor based on flexible fiber coated by conductive material"

材料 包覆方法 电导率/
(S·cm-1)
最大拉伸
应变/%
GF值(拉伸应变范围) 循环次数(循环
拉伸应变)
响应时间/ms 参考文献
GR+ AgNP/TPU 浸涂(层层自组装) 0.427 50 490.2 2 000(50%) [1]
AgNW/棉+TPU 浸涂 200 1.6(<50%)
4.2(<200%)
1 000(10%) 316 [4]
AgNW/TPU 部分嵌入 3.2 43 87.6 (<22%)
519.3(22%~39%)
2 500(5%) 49 [6]
MXene+AgNP+AgNW/
涤纶+氨纶
浸涂 200 309.10(0~60%)
474.38(60%~150%)
872.79(150%~200%)
1 500(20%) [12]
GR/尼龙+橡胶 喷涂 310 20.7 1 000(50%) [14]
PEDOT/涤纶 原位聚合 1 000 70 0.9 1 000(20%) [24]
RGO/PE+TPU 浸涂 100 10(<1%)
3.7(<50%)
10 000(50%) 100 [27]
GR/TPU 浸涂(层层自组装) 50 86.86 100(50%) [28]
GR/PBT 浸涂 50 2.5 [29]
AgNW/TPU+乳胶 浸涂 0.2 100 5.326(<25%) 10 000(5%) 20 [30]
石墨/蚕丝 挤压涂布 15 14.5 3 000(10%) 135 [31]
CNT/氨纶 挤压涂布 70.92 80 2~3 1 000(80%) [32]
MWNT+SWNT/TPU 超声包覆 13 100 1.67 (<20%)
1.24 (20%~100%)
2 000(50%) [34]
MWNT/TPU 超声包覆 300 102 10 000(50%) 200 [33]
MWNT/TPU 超声包覆 200 111.1 (<50%)
1 344.1 (150%~200%)
10 000(30%) 88 [35]
SWNT/PET+橡胶 超声包覆 44 46.4(<15%)
353(15%~29%)
980(29%~44%)
1 000(20%) 200 [36]
AgNW /POE 超声包覆 64 13 920 4 500(10%) 10 [37]
CNT/棉+氨纶 超声包覆+挤压涂布 350 200(10%) [38]
碳墨水/涤纶+乳胶 超声包覆 50 6.1 (0.5%~20%) 1 000(50%) 110 [39]
GR+CB/脱胶亚麻 超声包覆 296 60 1.46~5.62 (<8%) 1 000(8%) 209 [40]
SWNT/棉+TPU 上浆包覆 300 2.15 (<25%)
0.65(25%~240%)
300 000(40%) [41]
MWNT/TPU 上浆包覆 30 2.3 (<10%) [42]
GR+SWNT+CB/TPU 上浆包覆 350 2.14 2 400(25%) 65 [43]
AgNW/丙烯酸+氨纶 上浆包覆 50 80(12%) [44]
PPy/PET+橡胶 原位聚合 105 51.2 (<40%)
27.6(40%~105%)
400(10%) [45]
PANI/UHMWPE 原位聚合 0.87 10 7.38~15.47 [46]

Tab.3

Property of strain sensor based on coating conductive fiber using flexible matrix"

材料 制备方法 电导率/
(S·cm-1)
最大拉伸
应变/%
GF值(拉伸
应变范围)
循环次数(循环
拉伸应变)
响应时间/ms 参考文献
CNT/环氧树脂 纺纱技术 1 0.38 [47]
CNT/PVA 气凝胶纺丝 447.1 5 5.29 (3.6%~5%) 20(5%) [48]
CNT/Ecoflex 干法纺丝 960 0.54(<400%)
64(400%~960%)
10 000(300%) 10 [49]
GR/PVA 化学气相沉积 960 7.1 5.02 (1%~6.3%) 200(6%) [51]
GR/PDMS 化学气相沉积 8 34.3~48.9 50(6%) [52]
炭化PAN+GR/TPU 炭化 2 1 700 300(2%) [53]
炭化棉+炭化PAN/TPU 炭化 30 37.3(<0.1%)
11.5 (0.3%~30%)
1 000(0.1/20%) 300 [54]
[1] LI X, HU H, HUA T, et al. Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors[J]. Nano Research, 2018,11(11):5799-5811.
doi: 10.1007/s12274-018-2043-7
[2] TANG Z, JIA S, WANG F, et al. Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors[J]. ACS Applied Materials & Interfaces, 2018,10(7):6624-6635.
[3] ZHENG Q, LEE J H, SHEN X, et al. Graphene-based wearable piezoresistive physical sensors[J]. Materials Today, 2020,36:158-179.
doi: 10.1016/j.mattod.2019.12.004
[4] ZHAO M, LI D, HUANG J, et al. A mu.pngunctional and highly stretchable electronic device based on silver nanowire/wrap yarn composite for a wearable strain sensor and heater[J]. Journal of Materials Chemistry C, 2019,7(43):13468-13476.
doi: 10.1039/C9TC04252K
[5] YAN T, WANG Z, PAN Z J. Flexible strain sensors fabricated using carbon-based nanomaterials: a review[J]. Current Opinion in Solid State and Materials Science, 2018,22(6):213-228.
doi: 10.1016/j.cossms.2018.11.001
[6] ZHU G J, REN P G, GUO H, et al. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires[J]. ACS Applied Materials & Interfaces, 2019,11(26):23649-23658.
[7] 张辉. 本征导电纤维集合体的电-力学性能及其作为应变、压力传感器的性能分析[D]. 上海:东华大学, 2006: 2-3.
ZHANG Hui. Electromechanical properties of intrinsically conductive fiber assembles, its textile structure and applications as strain and pressure sensors[D]. Shanghai: Donghua University, 2006: 2-3.
[8] CHRIST J F, ALIHEIDARI N, AMELI A, et al. 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites[J]. Materials & Design, 2017,131:394-401.
[9] MATTMANN C, CLEMENS F, TROSTER G. Sensor for measuring strain in textile[J]. Sensors (Basel), 2008,8(6):3719-3732.
doi: 10.3390/s8063719
[10] LEE S, SHIN S, LEE S, et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics[J]. Advanced Functional Materials, 2015,25(21):3114-3121.
doi: 10.1002/adfm.v25.21
[11] SEYEDIN S, RAZAL J M, INNIS P C, et al. Knitted strain sensor textiles of highly conductive all-polymeric fibers[J]. ACS Applied Materials & Interfaces, 2015,7(38):21150-21158.
[12] LI H, DU Z. Preparation of a highly sensitive and stretchable strain sensor of MXene/silver nanocomposite-based yarn and wearable applications[J]. ACS Applied Materials & Interfaces, 2019,11(49):45930-45938.
[13] YUE X, JIA Y, WANG X, et al. Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring[J]. Composites Science and Technology, 2020,189:108038.
doi: 10.1016/j.compscitech.2020.108038
[14] SON W, KIM K B, LEE S, et al. Ecoflex-passivated graphene-yarn composite for a highly conductive and stretchable strain sensor[J]. Journal of Nanoscience and Nanotechnology, 2019,19(10):6690-6695.
doi: 10.1166/jnn.2019.17097
[15] PARK J J, HYUN W J, MUN S C, et al. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring[J]. ACS Applied Materials & Interfaces, 2015,7(11):6317-6324.
[16] WU X, HAN Y, ZHANG X, et al. Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer @polyurethane yarn for tiny motion monitoring[J]. ACS Applied Materials & Interfaces, 2016,8(15):9936-9945.
[17] BAUTISTA J R, POTSCHKE P, BRUNIG H, et al. Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning[J]. Polymer, 2016,82:181-189.
doi: 10.1016/j.polymer.2015.11.030
[18] WANG X, SUN H, YUE X, et al. A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring[J]. Composites Science and Technology, 2018,168:126-132.
doi: 10.1016/j.compscitech.2018.09.006
[19] LANGLEY D, GIUSTI G, MAYOUSSE C, et al. Flexible transparent conductive materials based on silver nanowire networks: a review[J]. Nanotechnology, 2013,24(45):452001.
doi: 10.1088/0957-4484/24/45/452001
[20] YEE M J, MUBARAK N M, ABDULLAH E C, et al. Carbon nanomaterials based films for strain sensing application:a review[J]. Nano-Structures & Nano-Objects, 2019,18:100312.
[21] WANG X, MENG S, TEBYETEKERWA M, et al. Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber[J]. Composites Part A: Applied Science and Manufacturing, 2018,105:291-299.
doi: 10.1016/j.compositesa.2017.11.027
[22] LI W Y, ZHOU Y F, WANG Y h, et al. Highly stretchable and sensitive SBS/graphene composite fiber for strain sensors[J]. Macromolecular Materials and Engineering, 2020,305(3):1900736.
doi: 10.1002/mame.v305.3
[23] YOU X, YANG J S, WANG M M, et al. Graphene-based fiber sensors with high stretchability and sensitivity by direct ink extrusion[J]. 2D Materials, 2020,7:015025.
doi: 10.1088/2053-1583/ab559f
[24] EOM J, JAISUTTI R, LEE H, et al. Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers[J]. ACS Applied Materials & Interfaces, 2017,9(11):10190-10197.
[25] SEYEDIN M Z, RAZAL J M, INNIS P C, et al. Strain-responsive polyurethane/PEDOT:PSS elastomeric composite fibers with high electrical conductivity[J]. Advanced Functional Materials, 2014,24(20):2957-2966.
doi: 10.1002/adfm.v24.20
[26] SEYEDIN S, MORADI S, SINGH C, et al. Continuous production of stretchable conductive mu.pngilaments in kilometer scale enables facile knitting of wearable strain sensing textiles[J]. Applied Materials Today, 2018,11:255-263.
doi: 10.1016/j.apmt.2018.02.012
[27] CHENG Y, WANG R, SUN J, et al. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion[J]. Advanced Materials, 2015,27(45):7365-7371.
doi: 10.1002/adma.201503558
[28] LI X, HUA T, XU B. Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core[J]. Carbon, 2017,118:686-698.
doi: 10.1016/j.carbon.2017.04.002
[29] NEJAD H R, PUNJIYA M P, SONKUSALE S. Washable thread based strain sensor for smart textile[C]// 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). Kaohsiung: Institute of Electrical and Electronics Engineers, 2017: 2167-0021.
[30] CHEN S, LOU Z, CHEN D, et al. Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves[J]. Advanced Materials Technologies, 2016,1(7):1600136.
doi: 10.1002/admt.201600136
[31] ZHANG M, WANG C, WANG Q, et al. Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors[J]. ACS Applied Materials & Interfaces, 2016,8(32):20894-20899.
[32] FOROUGHI J, SPINKS G M, AZIZ S, et al. Knitted carbon-nanotube-sheath/spandex-core elastomeric yarns for a.pngicial muscles and strain sensing[J]. ACS Nano, 2016,10(10):9129-9135.
doi: 10.1021/acsnano.6b04125
[33] YU Y, ZHAI Y, YUN Z, et al. Ultra-stretchable porous fiber-shaped strain sensor with exponential response in full sensing range and excellent anti-interference ability toward buckling, torsion, temperature, and humidity[J]. Advanced Electronic Materials, 2019,5(10):1900538.
doi: 10.1002/aelm.v5.10
[34] LI Y, ZHOU B, ZHENG G, et al. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing[J]. Journal of Materials Chemistry C, 2018,6(9):2258-2269.
doi: 10.1039/C7TC04959E
[35] SUN H, DAI K, ZHAI W, et al. A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure[J]. ACS Applied Materials & Interfaces, 2019,11(39):36052-36062.
[36] PAN J, HAO B, SONG W, et al. Highly sensitive and durable wearable strain sensors from a core-sheath nanocomposite yarn[J]. Composites Part B: Engineering, 2020,183:107683.
doi: 10.1016/j.compositesb.2019.107683
[37] ZHONG W, LIU C, XIANG C, et al. Continuously producible ultrasensitive wearable strain sensor assembled with three-dimensional interpenetrating Ag nanowires/polyolefin elastomer nanofibrous composite yarn[J]. ACS Applied Materials & Interfaces, 2017,9(48):42058-42066.
[38] CAI G, YANG M, PAN J, et al. Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications[J]. ACS Applied Materials & Interfaces, 2018,10(38):32726-32735.
[39] DUAN Z, JIANG Y, WANG S, et al. Inspiration from daily goods: a low-cost, facilely fabricated, and environment-friendly strain sensor based on common carbon ink and elastic core-spun yarn[J]. ACS Sustainable Chemistry & Engineering, 2019,7(20):17474-17481.
[40] SOURI H, BHATTACHARYYA D. Wearable strain sensors based on electrically conductive natural fiber yarns[J]. Materials & Design, 2018,154:217-227.
[41] WANG Z, HUANG Y, SUN J, et al. Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection[J]. ACS Applied Materials & Interfaces, 2016,8(37):24837-24843.
[42] ZHANG R, DENG H, VAKENCA R, et al. Carbon nanotube polymer coatings for textile yarns with good strain sensing capability[J]. Sensors and Actuators A: Physical, 2012,179:83-91.
doi: 10.1016/j.sna.2012.03.029
[43] HUANG Y, ZHAO Y, WANG Y, et al. Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions[J]. Smart Materials and Structures, 2018,27(3):035013.
doi: 10.1088/1361-665X/aaaba0
[44] DING L, XUAN S, FENG J, et al. Magnetic/conductive composite fibre: a mu.pngunctional strain sensor with magnetically driven property[J]. Composites Part A: Applied Science and Manufacturing, 2017,100:97-105.
doi: 10.1016/j.compositesa.2017.04.025
[45] PAN J, YANG M, LUO L, et al. Stretchable and highly sensitive braided composite yarn @polydopamine @polypyrrole for wearable applications[J]. ACS Applied Materials & Interfaces, 2019,11(7):7338-7348.
[46] HONG J H, PAN Z J, WANG Z, et al. A large-strain weft-knitted sensor fabricated by conductive UHMWPE/PANI composite yarns[J]. Sensors and Actuators A: Physical, 2016,238:307-316.
doi: 10.1016/j.sna.2015.12.028
[47] ZHAO H, ZHANG Y, BRADFORD P D, et al. Carbon nanotube yarn strain sensors[J]. Nanotechnology, 2010,21(30):305502.
doi: 10.1088/0957-4484/21/30/305502
[48] LI W, XU F, LIU W, et al. Flexible strain sensor based on aerogel-spun carbon nanotube yarn with a core-sheath structure[J]. Composites Part A: Applied Science and Manufacturing, 2018,108:107-113.
doi: 10.1016/j.compositesa.2018.02.024
[49] RYU S, LEE P, CHOU J B, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion[J]. ACS Nano, 2015,9(6):5929-5936.
doi: 10.1021/acsnano.5b00599
[50] LIU F, DONG Y, SHI R, et al. Continuous graphene fibers prepared by liquid crystal spinning as strain sensors for monitoring vital signs[J]. Materials Today Communications, 2020,24:100909.
doi: 10.1016/j.mtcomm.2020.100909
[51] WANG X, QIU Y, CAO W, et al. Highly stretchable and conductive core-sheath chemical vapor deposition graphene fibers and their applications in safe strain sensors[J]. Chemistry of Materials, 2015,27(20):6969-6975.
doi: 10.1021/acs.chemmater.5b02098
[52] NAKAMURA A, HAMANISHI T, KAWAKAMI S, et al. A piezo-resistive graphene strain sensor with a hollow cylindrical geometry[J]. Materials Science and Engineering: B, 2017,219:20-27.
doi: 10.1016/j.mseb.2017.02.012
[53] YAN T, WANG Z, WANG Y Q, et al. Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors[J]. Materials & Design, 2018,143:214-223.
[54] YAN T, ZHOU H, NIU H, et al. Highly sensitive detection of subtle movement using a flexible strain sensor from helically wrapped carbon yarns[J]. Journal of Materials Chemistry C, 2019,7(32):10049-10058.
doi: 10.1039/C9TC03065D
[1] ZHANG Runke, LÜ Wangyang, CHEN Wenxing. Preparation and electrochemical properties of carbon fiber fabric sensors co-modified by cobalt phthalocyanine and carbon nanotubes [J]. Journal of Textile Research, 2021, 42(04): 121-126.
[2] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49.
[3] JIANG Zhaohui, LI Yonggui, YANG Zitao, GUO Zengge, ZHANG Zhanqi, QI Yuanzhang, JIN Jian. Research progress in graphene/polymer composite fibers and textiles [J]. Journal of Textile Research, 2021, 42(03): 175-180.
[4] LOU Yaya, WANG Jing, DONG Yanchao, WANG Chunmei. Preparation and decolorization of rayon based zeoliticimidazolate framework functional material [J]. Journal of Textile Research, 2021, 42(02): 142-147.
[5] HU Jing, ZHANG Kaiwei, LI Ranran, LIN Jinyou, LIU Yuqing. Preparation of flax layered nano-cellulose and properties of its reinforced thermoelectric composites [J]. Journal of Textile Research, 2021, 42(02): 47-52.
[6] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[7] LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107.
[8] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[9] ZHAO Zhiqi, LI Qiujin, SUN Yuejing, GONG Jixian, LI Zheng, ZHANG Jianfei. Application of magnetic-graphene oxide/poly(allylamine hydrochloride) microcapsules for adsorption of dyes [J]. Journal of Textile Research, 2020, 41(07): 109-116.
[10] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots/polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[11] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[12] WU Yingxin, HU Chengye, ZHOU Xiaoya, HAN Xiao, HONG Jianhan, GIL Ignacio. Strain sensing property of flexible wearable spandex/polyaniline/polyurethane composites [J]. Journal of Textile Research, 2020, 41(04): 21-25.
[13] GAO Shan, LU Yehu, ZHANG Desuo, WU Lei, WANG Laili. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(04): 117-122.
[14] WANG Jiankun, JIANG Xiaodong, GUO Jing, YANG Lianhe. Research progress of functionalized graphene oxide adsorption materials [J]. Journal of Textile Research, 2020, 41(04): 167-173.
[15] MA Junzhi, WANG Dong, FU Shaohai. Preparation and properties of flame-retardant viscose fiber/dithiopyrophosphate incorporated with graphene oxide [J]. Journal of Textile Research, 2020, 41(03): 15-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!