Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (08): 188-196.doi: 10.13475/j.fzxb.20200403209

• Column: Medical Protective Textiles • Previous Articles    

Research progress of nonwovens for medical protective garment

AN Qi1,2, FU Yijun1,2, ZHANG Yu1,2, ZHANG Wei1,2, WANG Lu3, LI Dawei1,2()   

  1. 1. College of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong, Jiangsu 226019, China
    3. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2020-04-13 Revised:2020-05-18 Online:2020-08-15 Published:2020-08-21
  • Contact: LI Dawei E-mail:ldwntu@163.com

Abstract:

In order to promote the application of nonwovens for medical protective materials, this paper systematically reviewed on the development of nonwovens for medical protective garment as well as on the types and applications of nonwovens as novel protective materials. The preparation methods and protective properties of spun-bonded, meltblown, spunbond-meltblown-spunbond composite and flash spinning nonwovens were introduced, and the mechanisms and characteristics of novel nonwoven protective materials were discussed from three aspects, i.e. film covered nonwovens, composite nonwovens and functional nonwovens, focusing on the influence of structure of different protective materials on the virus blockage, moisture absorption and air permeability. In addition, the applications of intelligent monitoring, temperature or humidity regulation, and selfvdisinfection, self-cleaning intelligent materials in protective garment were described. The future medical protective garments are expected to be developed towards the direction of high protection, high comfort and intelligence.

Key words: medical protective garment, nonwoven material, virus barrier property, comfort, intelligent protection

CLC Number: 

  • TS174

Fig.1

Micromorphology of spun-bonded nonwovens. (a) Spun-bonded nonwovens; (b) Point bonding of spun-bonded nonwovens"

Fig.2

Production process of meltblown nonwovens"

Fig.3

Micromorphology of SMS composite nonwovens before(a) and after(b) fluorine containing finishing agent treatment"

Fig.4

Production process of flash spinning nonwovens"

Fig.5

Structure diagram of sandwich protective garment"

Fig.6

Fabric structure of SFS antiviral protective garment fabric"

Fig.7

Structure of tangerine flap spun-bonded fiber(a) and morphology of spun-bonded/spun-laced composite nonwovens(b)"

Fig.8

Medical protective garment fabric with water-repellent coating"

Fig.9

Comparison of antibacterial effect of samples before and after finishing. (a) Bacillus coli; (b) Staphylococcus aureus"

Fig.10

SEM images and contact angle photos of PP meltblown nonwovens with different finishing technology. (a) Untreated(×1 500); (b) Plasma treatment(×1 500); (c) Graft treatment(×100)"

Fig.11

Moisture conducting microporous membrane of carbon nanotubes"

[1] 姜慧霞. 医用防护服材料的性能评价研究[D]. 天津:天津工业大学, 2008: 3.
JIANG Huixia. The properties of medical protective materials and their evaluation[D]. Tianjin: Tiangong University, 2008: 3.
[2] 郎楠, 袁媛, 周静. 医用个体防护装备国内外标准的比较[J]. 职业卫生与应急救援, 2020,38(2):112-115.
LANG Nan, YUAN Yuan, ZHOU Jing. Comparison of domestic and foreign standards for medical personal protective equipment[J]. Occupational Health and Emergency Rescue, 2020,38(2):112-115.
[3] 汪邦芳, 卢洪洲. 高致病性传染病的医院感染控制:以上海市公共卫生临床中心为例[J]. 上海预防医学, 2019,31(12):1027-1030.
WANG Bangfang, LU Hongzhou. Nosocomial infection control in management of highly pathogenic infectious diseases[J]. Shanghai Journal of Preventive Medicine, 2019,31(12):1027-1030.
[4] 李晔, 蔡冉, 陆烨. 应对新型冠状病毒肺炎防护服的选择和使用[J]. 中国感染控制杂志, 2020,19(2):117-122.
LI Ye, CAI Ran, LU Ye. Selection and use of protective clothing in novel coronavirus pneumonia epidemic[J]. Chinese Journal of Infection Control, 2020,19(2):117-122.
[5] 魏聪, 徐玉茵, 周静, 等. 阻干态微生物穿透试验及仪器研究[J]. 中国医疗设备, 2018,33(9):59-60, 70.
WEI Cong, XU Yuyin, ZHOU Jing, et al. Research on resistance to dry microbial penetration detection and the equipments[J]. China Medical Devices, 2018,33(9):59-60,70.
[6] 张爱珍, 李静. 不同材质手术衣术中细菌阻隔性的比较研究[J]. 中国医疗器械信息, 2018,24(14):58-59.
ZHANG Aizhen, LI Jing. Comparative study of bacterial barrier in different materials of surgical clothes[J]. China Medical Device Information, 2018,24(14):58-59.
[7] 刘忠友, 郑仰煜, 罗庆祥, 等. 医用非织造布阻隔效果测试分析[J]. 产业用纺织品, 2017,35(9):24-27.
LIU Zhongyou, ZHENG Yangyu, LUO Qingxiang, et al. Analysis of barrier effect test for medical nonwovens[J]. TechnicaI Textiles, 2017,35(9):24-27.
[8] BALCI K, SELCEN F. Isolation gowns in healthcare settings: laboratory studies, regulations and standards, and potential barriers of gown selection and use[J]. American Journal of Infection Control, 2016,44(1):104-111.
doi: 10.1016/j.ajic.2015.07.042 pmid: 26391468
[9] 姜濛. 基于纺织品的个人卫生防护品研发新趋势[J]. 中国纤检, 2019(8):110-112.
JIANG Meng. A new trend of R & D for personal health protection products based on textiles[J]. China Fiber Inspection, 2019 (8):110-112.
[10] 王洁. “三拒一抗/单向导湿”非织造手术衣材料的后整理工艺研究[D]. 上海: 东华大学, 2014: 13-17.
WANG Jie. Study on "three repellent and antistatic/directional water-transfer" finishing of non-woven fabricfor surgical gown[D]. Shanghai: Donghua University, 2014: 13-17.
[11] 阳智, 石煜, 沈兰萍, 等. 天然抗菌微胶囊的制备与应用[J]. 针织工业, 2020(4):54-57.
YANG Zhi, SHI Yu, SHEN Lanping, et al. Preparation and application of natural antibacterial microcap-sules[J]. Knitting Industries, 2020(4):54-57.
[12] 黄景莹(译). 高效阻隔面料带来医用防护飞跃[J]. 非织造布, 2012(5):33.
HUANG Jingying (Translating). Medical protection leap brought by efficient barrier fabric[J]. Nonwovens, 2012(5):33.
[13] 司徒元舜. 医疗卫生非织造材料的加工: 原料、工艺及装备[J]. 纺织导报, 2017(6):83-86.
SITU Yuanshun. Processing of medical and health nonwovens: raw materials, technology and equip-ment[J]. China Textile Leader, 2017 (6):83-86.
[14] 齐晶晶. 仿3S柔滑爽卫生用热风非织造材料的研发[D]. 天津:天津工业大学, 2019: 12.
QI Jingjing. Research and development of silky and slippery hot air nonwovens imitating 3S[D]. Tianjin: Tiangong University, 2019: 12.
[15] 李晶. 基于医用纺熔复合非织造脂肪移植滤料制备及性能研究[D]. 上海: 东华大学, 2018: 6-7.
LI Jing. Preparation and properties of medical spunbond-meltblown composite nonwoven fat graft filter[D]. Shanghai: Donghua University, 2018: 6-7.
[16] 刘培杰. 芳纶纳米纤维涂覆非织造滤材在高温过滤领域的应用[D]. 上海: 东华大学, 2018: 2.
LIU Peijie. Application of aramid nanofiber coated nonwovens for high temperature filtration[D]. Shanghai: Donghua University, 2018: 2.
[17] YAN Y R, TSAI P P. Prediction of hydrostatic pressure and blood penetration of medical protective clothing[J]. Journal of Engineered Fibers and Fabrics, 2016,11(1):17-22.
[18] 李娜, 钱晓明. 医用非织造材料的发展与应用[J]. 纺织导报, 2017(3):67-70.
LI Na, QIAN Xiaoming. Development and application of medical nonwovens[J]. China Textile Leader, 2017(3):67-70.
[19] 刘元新, 春育. 非织造布后整理工艺及设备的新进展[J]. 纺织导报, 2018(10):86-91.
LIU Yuanxin, CHUN Yu. Progress in finishing technology and equipment for nonwovens[J]. China Textile Leader, 2018 (10):86-91.
[20] 刘亚, 吴汉泽, 程博闻, 等. 非织造医用防护材料技术进展及发展趋势[J]. 纺织导报, 2017(S1):78-82.
LIU Ya, WU Hanze, CHENG Bowen, et al. Technological progress and developing trends of nonwoven medical protective materials[J]. China Textile Leader, 2017(S1):78-82.
[21] XU H, WANG Y J, WANG F, et al. Formation and characterization of polytetrafluoroethylene nanofiber membranes for high-efficiency fine particulate filtra-tion[J]. RSC Advances, 2019,9(24):13631-13645.
doi: 10.1039/C9RA01643K
[22] AKAMATSU K, KAGAMI Y, NAKAO S. Effect of BSA and sodium alginate adsorption on decline of filtrate flux through polyethylene microfiltration membranes[J]. Journal of Membrane Science, 2020,594:117469.
[23] STEPHENIE S. Gore chempak CBRN apparel[J]. Law & Order, 2016,64(1):34-37.
[24] PARTHASARATHI V, THILAGAVATHI G. Developing antiviral surgical gown using nonwoven fabrics for health care sector[J]. African Health Sciences, 2013,13(2):327-332.
doi: 10.4314/ahs.v13i2.18 pmid: 24235931
[25] 赵晓明, 刘宝成. 透气式防毒服的发展现状及最新研究进展[J]. 材料导报, 2018,32(17):3083-3089, 3098.
ZHAO Xiaoming, LIU Baocheng. Permeable protective suit: status quo and latest research progress[J]. Materials Review, 2018,32(17):3083-3089, 3098.
[26] 彭鹏, 常敬颖, 张瑜, 等. 聚丙烯超细纤维与活性炭颗粒复合空气滤材的制备[J]. 化工新型材料, 2015,43(11):71-73.
PENG Peng, CHANG Jingying, ZHANG Yu, et al. Preparation of polypropylene superfine fiber and activated carbon particles composite air filter material[J]. New Chemical Materials, 2015,43(11):71-73.
[27] 赵宝宝, 钱幺, 钱晓明, 等. 梯度结构双组分纺粘水刺非织造材料的制备及其性能[J]. 纺织学报, 2018,39(5):61-66.
ZHAO Baobao, QIAN Yao, QIAN Xiaoming, et al. Preparation and properties of bicomponent spunbond- spunlance nonwoven materials with gradient struc-ture[J]. Journal of Textile Research, 2018,39(5):61-66.
[28] 倪冰选, 焦晓宁. 纺粘水刺复合非织造布的发展概况[J]. 产业用纺织品, 2010,28(1):4-7.
NI Bingxuan, JIAO Xiaoning. The development of spunbond-spunlaced composite nonwovens[J]. Technical Textiles, 2010,28(1):4-7.
[29] GUO Y H, HE W D, LIU J X. Electrospinning polyethylene terephthalate/SiO2 nanofiber composite needle felt for enhanced filtration performance[J]. Journal of Applied Polymer Science, 2020,137(2):48282.
[30] FACCINI M, VAQUERO C, AMANTIA D. Development of protective clothing against nanoparticle based on electrospun nanofibers[J]. Journal of Nanomaterials, 2012(2):892-894.
[31] 张超, 秦挺鑫, 申世飞, 等. 国内外防护服标准比对研究[J]. 纺织导报, 2019(1):96-99.
ZHANG Chao, QIN Tingxin, SHEN Shifei, et al. Comparative study on the protective clothing standards at home and abroad[J]. China Textile Leader, 2019(1):96-99.
[32] 王启, 姜慧婧, 杨玮婧, 等. 非织造布的应用现状及前景[J]. 合成材料老化与应用, 2017,46(6):103-107.
WANG Qi, JIANG Huijing, YANG Weijing, et al. Application status and prospect of nonwovens[J]. Synthetic Materials Aging and Application, 2017,46(6):103-107.
[33] TANG X, ZHANG X, ZHANG H, et al. Facile dip-coating process towards multifunctional nonwovens:robust noise reduction, abrasion resistance and antistatic electricity[J]. Textile Research Journal, 2018,88(22):2568-2578.
[34] MORADI F, AHMADI M S, MASHROTEH H. Development of tri-layer breathable fluid barrier nonwoven fabrics for surgical gown applications[J]. Journal of The Textile Institute, 2019,110(11):1545-1551.
[35] 罗勤. 感冒了帮你鉴别细菌感染和病毒感染[J]. 家庭医学(下), 2018(7):54.
LUO Qin. A cold helps you distinguish between bacterial infection and viral infection[J]. Family Medicine(Ⅱ), 2018(7):54.
[36] 谢柠蔚, 张瑜, 张广宇. 纳米氧化锌对热风非织造材料抗菌性的影响[J]. 棉纺织技术, 2017,45(11):18-20.
XIE Ningwei, ZHANG Yu, ZHANG Guangyu. Influence of nano ZnO on the antibacterial property of hot-air ES nonwovens[J]. Cotton Textile Technology, 2017,45(11):18-20.
[37] 魏发云, 张伟, 邹学书, 等. 等离子体诱导丙烯酸接枝改性聚丙烯熔喷非织造材料[J]. 纺织学报, 2017,38(9):109-114.
WEI Fayun, ZHANG Wei, ZOU Xueshu, et al. Grafted modification of polypropylene melt-blown nonwoven materials with acrylic acid induced by plasma[J]. Journal of Textile Research, 2017,38(9):109-114.
[38] LI Q, TAO X M. Three-dimensionally deformable, highly stretchable, permeable, durable and washable fabric circuit boards[J]. Proceedings of the Royal Society A: Mathematical Physical & Engineering Sciences, 2014,470(2171):20140472.
[39] 黄倩倩, 李俊, 王云仪. 电子服装性能及其集成技术研究进展[J]. 上海纺织科技, 2018,46(6):1-6.
HUANG Qianqian, LI Jun, WANG Yunyi. Research progress of electronic clothing properties and integration technology[J]. Shanghai Textile Science & Technology, 2018,46(6):1-6.
[40] 段双亮. 基于人工智能的碳纳米管及其复合材料的介电性能和电磁屏蔽效能研究[D]. 西安: 西安电子科技大学, 2015: 4.
DUAN Shuangliang. Study of dielectric properties and electromagnetic shielding effectiveness of carbon nanotubes and their composite materials based on artificial intelligence[D]. Xi'an: Xidian University, 2015: 4.
[41] 包世勇. 聚苯胺/金纳米颗粒电化学传感器修饰材料的制备及应用[D]. 杭州: 浙江理工大学, 2015: 8-9.
BAO Shiyong. Preparation of PANI/Au electrochemical modified nanomaterials and their applications[D]. Hangzhou: Zhejiang Sci-Tech University, 2015: 8-9.
[42] 钟卫兵, 卿星, 王跃丹. 纳米技术在生化防护服中的应用及研究进展[J]. 山东纺织经济, 2016,227(1):34-36.
ZHONG Weibing, QING Xing, WANG Yuedan. Application and research progress of nanotechnology in biochemical protective clothing[J]. Shandong Textile Economy, 2016,227(1):34-36.
[43] 朱孝明, 代子荐, 赵奕, 等. 改性二氧化钛/纺黏-熔喷非织造抗菌复合滤材的制备及性能[J]. 东华大学学报(自然科学版), 2019,45(2):196-203.
ZHU Xiaoming, DAI Zijian, ZHAO Yi, et al. Fabrication and properties of modified TiO2/spun-bonded and melt-blown nonwoven antibacterial composite filter[J]. Journal of Donghua University (Natural Science Edition), 2019,45(2):196-203.
[44] 王丹, 阮梦瑶, 赵保军, 等. 超疏水纯棉大网孔水刺材料的制备及性能[J]. 东华大学学报(自然科学版), 2019,45(2):181-188.
WANG Dan, RUAN Mengyao, ZHAO Baojun, et al. Preparation and properties of super-hydrophobic meshed cotton spunlace material[J]. Journal of Donghua University (Natural Science Edition), 2019,45(2):181-188.
[1] SUN Cenwenjie, NI Jun, ZHANG Zhaohua, DONG Wanting. Ventilation design and thermal-wet comfort evaluation of knitted sportswear [J]. Journal of Textile Research, 2020, 41(11): 122-127.
[2] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel/polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
[3] ZHANG Zhaohua, LI Luyao, AN Ruiping. Thermal-wet comfort evaluation of head and torso ventilation of pipe garment [J]. Journal of Textile Research, 2020, 41(08): 88-94.
[4] LEI Min, LI Yuling, MA Yanxue, CHENG Longdi, ZHOU Feng. Research progress of moisture evaporating performance of fabrics [J]. Journal of Textile Research, 2020, 41(07): 174-181.
[5] XIA Haibang, HUANG Hongyun, DING Zuohua. Clothing comfort evaluation based on transfer learning and support vector machine [J]. Journal of Textile Research, 2020, 41(06): 125-131.
[6] ZHENG Qing, WANG Hongfu, KE Ying, LI Shuang. Design and evaluation of cooling clothing by phase change materials for miners [J]. Journal of Textile Research, 2020, 41(03): 124-129.
[7] LIU Yuhao, SUN Hui, WANG Jieqi, YU Bin. Preparation of TiO2 / MIL-88B(Fe) / polypropylene composite melt-blown nonwovens and study on dye degradation properties [J]. Journal of Textile Research, 2020, 41(02): 95-102.
[8] XIAO Ping, ZHANG Zhaohua, ZHOU Ying, LIU Jiakai, TANG Haoyuan. Influence of arm angular motion on clothing local thermal insulation [J]. Journal of Textile Research, 2020, 41(02): 109-114.
[9] LIU Yuping, LU Yehu, WANG Laili. Research progress on thermal comfort of bedding system [J]. Journal of Textile Research, 2020, 41(01): 190-196.
[10] HU Beibei, DU Feifei, LI Xiaohui. Hole structure optimization and evaluation of thermal barrier for firefighter protective clothing [J]. Journal of Textile Research, 2019, 40(11): 140-144.
[11] DONG Ke, ZHANG Ling, FAN Jiaxuan, LI Mengjie, MEI Lin, XIAO Xueliang. Action mechanism of wearing pressure on electrocardiogram monitoring of woven fabric electrodes [J]. Journal of Textile Research, 2019, 40(09): 75-82.
[12] ZOU Zhiwei, QIAN Xiaoming, QIAN Yao, ZHAO Baobao, DUO Yongchao. Effect of oil removal on charging performance of needle-punched nonwoven filters [J]. Journal of Textile Research, 2019, 40(06): 79-84.
[13] JIANG Rongfan, WANG Yunyi. Research progress of stickiness perception of human body in dressing [J]. Journal of Textile Research, 2019, 40(05): 177-184.
[14] LIU Linyu, CHEN Chengyi, WANG Zhenyu, ZHU Huan, JIN Yanping. Thermal-moisture comfort of multilayered fabric systemsused as firefighting clothing [J]. Journal of Textile Research, 2019, 40(05): 119-123.
[15] DU Feifei, LI Xiaohui, ZHANG Siyan. Evaluation of thermal protection performance of honeycomb sandwich structure fabric for fireproof clothing [J]. Journal of Textile Research, 2019, 40(03): 133-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!