Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (01): 162-166.doi: 10.13475/j.fzxb.20200404105

• Machinery & Accessories • Previous Articles     Next Articles

Influencing factors on high speed of electronic shogging system in warp knitting machines

GUO Weidong, XIA Fenglin(), ZHANG Qi   

  1. Engineering Research Center for Knitting Technology, Ministry of Education,Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2020-04-15 Revised:2020-08-28 Online:2021-01-15 Published:2021-01-21
  • Contact: XIA Fenglin E-mail:xiafl_622@163.com

Abstract:

The high-speed response of electronic shogging system in high-speed warp knitting machines is generally poor. According to the motion requirements of warp knitting machine guide bar, this research built a set of test platforms for the response of guide bar motion. Parameters such as servo inertia ratio, motor selection (such as motor power, magnetic pole pairs, and so on) of the electronic shogging system were experimented on to analyze the actual motion curve of the shogging servo motor and the control system command curve against the parameter variations. The experimental results show that the servo inertia ratio parameter setting of the electronic traverse system should be consistent with the actual load, otherwise it will cause comb bar oscillation during traverse, or insufficient motion rigidity, affecting the traverse accuracy. The selection of servo motor should consider the number of pole pairs and the motor power. Increasing the number of pole pairs of the servo motor can greatly improve the responsiveness of the system, and increasing the power of the motor does not contribute to the improvement of system responsiveness.

Key words: warp knitting machine, electronic traverse system, servo control, motion curve

CLC Number: 

  • TS183.92

Fig.1

Structure of warp knitting machine electronic shogging system"

Fig.2

Diagram of spindle traverse angle"

Fig.3

Comparison of speed curve under three inertia ratio parameters"

Tab.1

Three servo motor parameters for experiment"

电动机 型号 磁极对数 额定功率/kW
伺服电动机1 CSMS-20BQ 10 2.0
伺服电动机2 TCLT-20BQ 8 2.0
伺服电动机3 CSMS-25BQ 10 2.5

Fig.4

Comparison of three servo speed curves in different speeds. (a) Performance comparison of motor at 1 500 r/mim;(b) Performance comparison of motor at 2 000 r/mim"

[1] 孔震, 蒋高明, 夏风林. 经编机伺服控制系统的参数调节方法[J]. 纺织学报, 2008,29(10):102-108.
KONG Zhen, JIANG Gaoming, XIA Fenglin. Parameters adjusting methods of warp knitting servo-control system[J]. Journal of Textile Research, 2008,29(10):102-108.
[2] 张琦, 蒋高明, 夏风林, 等. 动态变结构控制策略在经编机高速电子横移中的应用[J]. 纺织学报, 2013,34(3):121-126.
ZHANG Qi, JIANG Gaoming, XIA Fenglin, et al. Research on dynamic variable structure control strategy for high-speed electronic shogging motion on warp knitting machine[J]. Journal of Textile Research, 2013,34(3):121-126.
[3] 夏风林, 蒋高明, 葛明桥. 高速经编机电子横移系统运动精度分析[J]. 纺织学报, 2009,30(3):106-110.
XIA Fenglin, JIANG Gaoming, GE Mingqiao. Moving precision analysis of electronic shogging system on high speed warp knitting machine[J]. Journal of Textile Research, 2009,30(3):106-110.
[4] KARL Mayer. Tricot machine KS4 EL-EBC with electronic pattern drive[J].Kettenwirk Praxis, 2015(2):8-9.
pmid: 5518636
[5] 郑宝平, 蒋高明, 夏风林, 等. 双PID控制的经编机电子横移系统设计[J]. 纺织学报, 2012,33(5):135-139.
ZHENG Baoping, JIANG Gaoming, XIA Fenglin, et al. Design of electronic shogging system based on double PID control on warp knitting machine[J]. Journal of Textile Research, 2012,33(5):135-139.
[6] 刘念, 夏风林, 张琦, 等. 经编机梳栉横移机构的动力学分析[J]. 纺织学报, 2012,33(11):121-126.
LIU Nian, XIA Fenglin, ZHANG Qi, et al. Dynamic analysis of shogging motion mechanism ofguide bar on warp knitting machine[J]. Journal of Textile Research, 2012,33(11):121-126.
[7] 付睿云, 孟婥, 卜剑秋, 等. 经编机电子横移系统伺服刚度的提高[J]. 东华大学学报(自然科学版), 2019,45(2):270-274,284.
FU Ruiyun, MENG Zhuo, BU Jianqiu, et al. Improvement of servo stiffness of electronic shogging system on warp knitting machine[J]. Journal of Donghua University(Natural Science Edition), 2019,45(2):270-274,284.
[8] 张琦, 蒋高明, 夏风林, 等. 高速经编机电子横移控制模型选择及动态响应分析[J]. 纺织学报, 2012,33(1):126-131.
ZHANG Qi, JIANG Gaoming, XIA Fenglin. Choice and dynamic response analysis of control model forelectronicshogging motion on high-speed warp knitting machine[J]. Journal of Textile Research, 2012,33(1):126-131.
[9] 李军, 黄伟. 数控机床进给伺服系统惯量的分析与计算[J].装备制造技术, 2014(2):151-152,157.
LI Jun, HUANG Wei. Analysis and calculation of inertia of CNC machine tool feed servo system[J]. Equipment Manufacturing Technology, 2014(2):151-152,157.
[10] 黄捷建, 张静, 李浩, 等. 伺服电机负载惯量比的合理取值[J]. 微电机, 2017,50(11):72-75.
HUANG Jiejian, ZHANG Jing, LI Hao, et al. Reasonable design of inertia ratio between load and motor[J]. Micromotors, 2017,50(11):72-75.
[11] 肖磊, 张海, 许宝玉, 等. 径向调制永磁齿轮磁极数量对传动特性的影响研究[J]. 机械传动, 2019,43(5):1-5.
XIAO Lei, ZHANG Hai, XU Baoyu, et al. Study on influence of number of permanent magnetic pole pair on transmission characteristic of radial modulated permanent magnetic gear[J]. Journal of Mechanical Transmission, 2019,43(5):1-5.
[1] SUN Shuai, MIAO Xuhong, ZHANG Qi, WANG Jin. Yarn tension fluctuation on high-speed warp knitting machine [J]. Journal of Textile Research, 2020, 41(03): 51-55.
[2] WANG Jiandong, XIA Fenglin, LI Yalin, ZHAO Yuning. Optimal sliding mode control of electronic transverse servo for comb bar of warp knitting machine [J]. Journal of Textile Research, 2020, 41(02): 143-148.
[3] YUAN Ruwang, ZHU Leilei, LÜ Xuekui, YANG Jiamin. Modeling of rotary shifting motion characteristics of electronic dobby and influence thereof on shedding mechanisms driving [J]. Journal of Textile Research, 2019, 40(12): 127-133.
[4] ZHANG Qi, WEI Li, LUO Cheng, XIA Fenglin, JIANG Gaoming. Double jacquard control system of warp knitting machine based on dual bus architecture [J]. Journal of Textile Research, 2019, 40(07): 145-150.
[5] XU Yunlong, XIA Fenglin. Influence of guide-bar swing on instantaneous yarn demand and yarn tension on double needle bar warp knitting machine [J]. Journal of Textile Research, 2019, 40(06): 106-110.
[6] . Simulation of electronic shogging system on warp knitting machine based on Simulink [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 150-156.
[7] . Knitting motions for multi-bar warp knitting machine driven by E-cam [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(04): 127-133.
[8] . Design of embedded electronic jacquard control system [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 135-140.
[9] . New emotional design mode for haute couture [J]. Journal of Textile Research, 2015, 36(12): 152-157.
[10] . Analysis of shogging motion of guide bars on warp knitting machines [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(7): 121-125.
[11] . Research on dynamic variable structure control strategy for high-speed electronic shogging motion on warp knitting machine [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(3): 121-126.
[12] . Yarn-guiding system based on servo control and crank-link mechanism [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(9): 130-134.
[13] LIU Xin, HU Xu-Dong, CHEN Hong-Li. Dynamic analysis of warp knitting swing machine guide bar swing mechanism based on flexible multi-body system [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(6): 92-96.
[14] ZHENG Bao-Ping, JIANG Gao-Ming, XIA Feng-Lin, ZHANG Qi, QIN Wen. Design of electronic shogging system based on double PID control on warp knitting machine [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(5): 135-139.
[15] . Model-building for slot needles’six-bar linkage of high speed warp knitting machine based on UG [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(12): 127-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!