Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (05): 51-58.doi: 10.13475/j.fzxb.20200407108

• Textile Engineering • Previous Articles     Next Articles

Comparative study on testing methods for unidirectional water transport in fabrics

JIANG Yanting1, YAN Qingshuai1, XIN Binjie1(), GAO Cong1, SHI Meiwu2   

  1. 1. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
    2. Institute of Quartermaster Engineering & Technology, Institute of System Engineering, Academy of Military Sciences, Beijing 100010, China
  • Received:2020-04-28 Revised:2021-02-18 Online:2021-05-15 Published:2021-05-20
  • Contact: XIN Binjie E-mail:xinbj@sues.edu.cn

Abstract:

The unidirectional water transport performance of textiles is a key index that affects the comfort of textiles or sports textiles used for the summer season. On the basis of analyzing the state of water diffusion measured by moisture management tester (MMT) needle array sensor, four types of fabrics are selected for actual measurement. It is reflected that the MMT method is prone to large test errors for fabrics with dot-array water repellent application for unidirectional water transport function and for unidirectional water transport fabrics with embedded conductive fibers. A new method was proposed to collect dynamically the water transfer image of the front and back sides of textiles, which offers more complete water infiltration information. The unidirectional water transfer performance of textiles in one direction were evaluated easily to obtain more accurate results. The new image method for dynamical collection of water transmission images of the front and back of textiles demonstrates a good application prospect.

Key words: textiles, moisture absorption and quick drying, unidirectional water transport, image processing, dynamic water transfer, thermal and wet comfort

CLC Number: 

  • TS107.1

Fig.1

Testing principle of moisture management tester"

Tab.1

MMT test results of 4 different fabrics"

样品
编号
浸湿时间 吸水速率 最大浸湿半径 液态水扩散速度 单向传递指数
平均
值/s
标准
偏差/s
CV
值/%
平均值/
(%·s-1)
标准偏差/
(%·s-1)
CV
值/%
平均
值/mm
标准偏
差/mm
CV
值/%
平均值/
(mm·s-1)
标准偏差/
(mm·s-1)
CV
值/%
平均值 标准
偏差
CV
值/%
1 1.13 0.47 42 46.83 8.62 18 28.33 2.89 10 7.48 2.21 30 58.47 58.64 100
0.66 0.35 53 60.68 6.28 10 28.33 2.89 10 10.87 4.52 42
2 0.32 0.00 0 36.71 2.44 7 30.00 0.00 0 17.66 0.42 2 534.59 20.27 4
0.32 0.00 0 71.56 6.89 10 30.00 0.00 0 21.00 3.45 16
3 1.13 0.05 4 42.81 3.09 7 30.00 0.00 0 7.95 0.39 5 288.45 93.02 32
0.32 0.00 0 65.91 3.12 5 30.00 0.00 0 17.17 0.29 2
4 1.13 0.20 17 38.21 4.30 11 30.00 0.00 0 8.61 1.07 12 174.90 11.37 7
0.32 0.00 0 54.13 10.18 19 30.00 0.00 0 19.79 4.49 23

Fig.2

Image acquisition system"

Fig.3

Raw wetting image sequence of sample 4. (a)Hydrophilic surface; (b)Hydrophobic surface"

Fig.4

Algorithm structure diagram of liquid water transfer image analysis"

Fig.5

Comparison of fabric hydrophilic surface wetting. (a)Before wetting; (b)After wetting"

Fig.6

Preprocessing diagram of images. (a) Adjust gray scale range; (b) Bilateral filtering; (c) Binarization; (d) Open operation; (e) Closed operation; (f)Remove noise"

Fig.7

Preprocessing image sequence. (a)Hydrophilic surface; (b)Hydrophobic surface"

Fig.8

Pixel and image sequence relationship curve"

[1] 王欢, 张富丽, 李艳梅. 吸湿速干面料性能测试与评价[J]. 丝绸, 2019,56(2):48-54.
WANG Huan, ZHANG Fuli, LI Yanmei. Performance test and evaluation of hygroscopic and quick-drying fabrics[J]. Journal of Silk, 2019,56(2):48-54.
[2] 贺建国, 章为敬. 一种新型单向导湿面料的开发[J]. 现代纺织技术, 2019,27(4):24-27.
HE Jianguo, ZHANG Weijing. Development of a new type of unidirectional wet fabric[J]. Advanced Textile Technology, 2019,27(4):24-27.
[3] 徐伟杰, 张玉高. 导湿快干与单向导湿织物[J]. 印染, 2011,37(2):46-51.
XU Weijie, ZHANG Yugao. Moisture-conducting, quick-drying and unidirectional moisture-absorbing fabric[J]. China Dyeing & Printing, 37(2):46-51.
[4] 汝新伟, 张君秋, 李永海. 武警新一代多功能体能训练服面料的研制和生产[C]// 2016全国针织技术交流会. 北京:中国纺织工程学会, 2016: 21-25.
RU Xinwei, ZHANG Junqiu, LI Yonghai. Development and production of a new generation of mu.pngunctional physical training clothing fabrics for the armed police[C]// 2016 National Knitting Technology Exchange Conference. Beijing: China Textile Engineering Society, 2016: 21-25.
[5] 周长胜, 许俊明, 刘壮洪. 针织面料在军服中的应用[J]. 针织工业, 2019(8):10-13.
ZHOU Changsheng, XU Junming, LIU Zhuanghong. Application of knitted fabrics in military uniforms[J]. Knitting Industries, 2019 (8):10-13.
[6] 刘明远, 尉霞, 开吴珍. 纺织品吸湿速干性标准的对比[J]. 印染, 2019,45(22):47-52.
LIU Mingyuan, WEI Xia, KAI Wuzhen. Comparison of hygroscopic and quick-drying standards for textiles[J]. China Dyeing & Finishing, 2019,45(22):47-52.
[7] 周嘉齐. 纺织材料液体传递性能测试方法的研究[D]. 上海: 东华大学, 2017: 4-18.
ZHOU Jiaqi. Research on testing method of liquid material liquid transfer performance[D]. Shanghai:Donghua University, 2017: 4-18.
[8] YAO B G, LI Y, HU J Y, et al. An improved test method for characterizing the dynamic liquid moisture transfer in porous polymeric materials[J]. Polymer Testing, 2006,25(5):677-689.
doi: 10.1016/j.polymertesting.2006.03.014
[9] 谢梅娣, 王启明, 黄雅萍. 图像处理测试织物导湿性能的应用研究[J]. 上海纺织科技, 2005(11):62-63.
XIE Meidi, WANG Qiming, HUANG Yaping. Application research on image processing to test the moisture conductivity of fabrics[J]. Shanghai Textile Science and Technology, 2005 ( 11):62-63.
[10] 贺庆楼. 基于图像技术的纺织品导湿性能的测试方法研究[D]. 上海:东华大学, 2007: 11-50.
HE Qinglou. Research on testing method of textile moisture permeability based on image technology[D]. Shanghai: Donghua University, 2007: 11-50.
[11] 余绍勇. 基于图像处理的织物导湿性能研究[D]. 上海: 东华大学, 2008: 5-28.
YU Shaoyong. Research on fabric moisture permeability based on image processing[D]. Shanghai: Donghua University, 2008: 5-28.
[12] 杜文豪, 张慧萍, 晏雄. 运用高速摄影对不同结构参数织物导湿性能的研究[J]. 天津纺织科技, 2009(1):12-17.
DU Wenhao, ZHANG Huiping, YAN Xiong. Using high-speed photography to study the moisture conductivity of fabrics with different structural parameters[J]. Tianjin Textile Science and Technology, 2009(1):12-17.
[13] HU Junyan, LI Yi, YEUNG K W, et al. Moisture management tester: a method to characterize fabric liquid moisture management properties[J]. Textile Research Journal, 2005,75(1):57-62.
doi: 10.1177/004051750507500111
[14] 王建平, 朱雯喆, 党敏. 吸湿速干纺织产品性能评价中的标准适用性问题[J]. 纺织导报, 2017(10):107-110,112-113.
WANG Jianping, ZHU Wenzhe, DANG Min. Applicability of standards in the performance evaluation of hygroscopic and quick-drying textile products[J]. China Textile Leader, 2017 (10):107-110,112-113.
[15] 任惠, 吴雄英, 李毅. 纺织品中液态水传递性能的测试方法[J]. 上海纺织科技, 2005(10):28-30.
REN Hui, WU Xiongying, LI Yi. Test method of liquid water transfer performance in textiles[J]. Shanghai Textile Science and Technology, 2005(10):28-30.
[16] 陈百顺, 郭峰, 何泽寿. 单向导湿针织面料的开发[J]. 针织工业, 2014(2):1-4.
CHEN Baishun, GUO Feng, HE Zeshou. Development of unidirectional wet-knit fabrics[J]. Knitting Industries, 2014 (2):1-4.
[1] SU Mengru, ZOU Ting, CHEN Qichao, LI Chaojing, WANG Fujun, WANG Lu. Research progress of medical barbed sutures [J]. Journal of Textile Research, 2021, 42(05): 178-184.
[2] LUO Xiaolei, LI Ziyan, MA Ya'nan, LIU Lin, KRUCINSKA Izabella, YAO Juming. Progress in ecological flame retardant technology for textiles [J]. Journal of Textile Research, 2021, 42(05): 193-202.
[3] XIAO Yuan, LI Hongying, LI Qian, ZHANG Wei, YANG Pengcheng. Preparation of flexible sensor with composite dielectric layer of cotton fabric/polydimethylsiloxane [J]. Journal of Textile Research, 2021, 42(05): 79-83.
[4] ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109.
[5] ZHOU Yingyu, WANG Rui, JIN Gaoling, WANG Wenqing. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics [J]. Journal of Textile Research, 2021, 42(03): 181-189.
[6] LI Dongjie, GUO Shuai, YANG Liu. Yarn defect detection based on improved image threshold segmentation algorithm [J]. Journal of Textile Research, 2021, 42(03): 82-88.
[7] TANG Qianhui, WANG Lei, GAO Weidong. Detection of fabric shape retention based on image processing [J]. Journal of Textile Research, 2021, 42(03): 89-94.
[8] DING Zihan, QIU Hua. Preparation and performance of nano-silica modified water-based polyurethane waterproof and moisture-permeable coated fabrics [J]. Journal of Textile Research, 2021, 42(03): 130-135.
[9] MENG Lingling, WEI Qufu, YAN Zhongjie, ZHONG Zhenzhen, WANG Xiaohui, SHEN Jiayu, CHEN Hongwei. Preparation and properties of Ag/ZnO composite film deposited polyester fabrics by magnetron sputtering [J]. Journal of Textile Research, 2021, 42(03): 143-148.
[10] JIANG Zhaohui, LI Yonggui, YANG Zitao, GUO Zengge, ZHANG Zhanqi, QI Yuanzhang, JIN Jian. Research progress in graphene/polymer composite fibers and textiles [J]. Journal of Textile Research, 2021, 42(03): 175-180.
[11] MENG Shuo, XIA Xuwen, PAN Ruru, ZHOU Jian, WANG Lei, GAO Weidong. Detection of fabric density uniformity based on convolutional neural network [J]. Journal of Textile Research, 2021, 42(02): 101-106.
[12] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[13] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[14] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[15] ZHANG Qian, MAO Jifu, LÜ Luyao, XU Zhongmian, WANG Lu. Abrasion resistance of suture at anchor eyelet for tendon-bone repair and its influencing factors [J]. Journal of Textile Research, 2020, 41(12): 66-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!