Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (12): 26-30.doi: 10.13475/j.fzxb.20200407406

• Fiber Materials • Previous Articles     Next Articles

Effect of atomic layer deposition technology on functionalization of cellulose membrane

LI Junyu1, JIANG Peiqing2, ZHANG Wenqi3, LI Wenbin1()   

  1. 1. State Key Laboratory of Textile New Materials and Advanced Processing Technology in Hubei Province, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Glorious Sun Guangdong School of Fashion, Huizhou University, Huizhou, Guangdong 516007, China
    3. Hubei Sanjiang Boats Science & Technology Co., Ltd., Xiaogan, Hubei 432000, China
  • Received:2020-04-28 Revised:2020-09-16 Online:2020-12-15 Published:2020-12-23
  • Contact: LI Wenbin E-mail:li780713@hotmail.com

Abstract:

In order to expand the use of cellulose membranes into medical, construction and other fields, with the characteristics of ultraviolet shielding, antibacterial of nano-zinc oxide, atomic layer depos-ition technology (ALD) were used to deposit nano-zinc oxide on the surface of cellulose membrane. The cellulose membrane was prepared to offer UV-blocking and antibacterial functions, and the effects of different temperatures and cycle numbers on the membrane properties were discussed. The structure and performance of the cellulose membranes treated with ALD were analyzed using ultraviolet spectrophotometer, scanning electron microscopy, X-ray diffraction, thermogravimetric analysis and other analytical tools. The results show that as the temperature and the number of cycles increase, the UV transmittance of the cellulose membrane treated with ALD is reduced from 74.50% to 1.46%, and the antibacterial rate of ALD functionalized cellulose membrane against Staphylococcus aureus reaches 99.9%. In addition, on the surface of the treated cellulose membrane with nano-zinc oxide with hexagonal wurtzite structure, the residual carbon rate increases from 16.61% to 31.20%.

Key words: cellulose membrane, atomic layer deposition technology, nano-zinc oxide, UV-blocking, antibacterial property

CLC Number: 

  • TS101

Tab.1

Temperatures and cycle numbers setting of experiment"

样品
编号
温度/
循环
次数
样品
编号
温度/
循环
次数
A0 25 0 A18 110 40
A1 60 10 A19 110 50
A2 60 20 A20 110 100
A3 60 30 A21 110 200
A4 60 40 A22 130 10
A5 60 50 A23 130 20
A6 60 100 A24 130 30
A7 60 200 A25 130 40
A8 90 10 A26 130 50
A9 90 20 A27 130 100
A10 90 30 A28 130 200
A11 90 40 A29 160 10
A12 90 50 A30 160 20
A13 90 100 A31 160 30
A14 90 200 A32 160 40
A15 110 10 A33 160 50
A16 110 20 A34 160 100
A17 110 30 A35 160 200

Fig.1

UV transmittance of cellulose membranes treated with different cycles (a) and temperatures (b)"

Fig.2

Antibacterial images of cellulose membranes treated with different cycles and temperatures"

Tab.2

Antibacterial rate to Staphylococcus aureus of cellulose membranes treated with different temperatures and cycle"

样品
编号
温度/
循环
次数
稀释
倍数
菌落
抑菌
率/%
A0 25 0 1 000 401
A1 60 10 100 161 96.0
A15 110 10 100 134 96.7
A5 60 50 10 12 99.9
A19 110 50 10 19 99.9

Fig.3

SEM images of cellulose membranes treated with different cycles and temperatures"

Fig.4

XRD spectra of cellulose membranes"

Fig.5

Thermal stability curves of cellulose membranes treated with different temperatures and cycles"

[1] 黄方千, 李强林, 杨东洁, 等. 有机紫外线吸收剂研究进展[J]. 印染, 2011,37(20):47-52.
HUANG Fangqian, LI Qianglin, YANG Dongjie, et al. Research progress of organic ultraviolet absorbers[J]. China Dyeing & Finishing, 2011,37(20):47-52.
[2] 孙晓晨, 张放, 邵华. 紫外线对人体健康影响[J]. 中国职业医学, 2016(3):380-383.
SUN Xiaochen, ZHANG Fang, SHAO Hua. Effects of ultraviolet radiation on human health[J]. Chinese Occupational Medicine, 2016(3):380-383.
[3] MANCEBO S E, WANG S Q. Skin cancer: role of ultraviolet radiation in carcinogenesis[J]. Reviews on Environmental Health, 2014,29(3):265-273.
pmid: 25252745
[4] EHSAN S, SAJJAD M. Bioinspired synjournal of zinc oxide nanoparticle and its combined efficacy with different antibiotics against multidrug resistant bac-teria[J]. Journal of Biomaterials and Nanobiotech-nology, 2017,8:159-175.
[5] 洪晓东, 邓恩燕, 杨东旭. PMMA/纳米ZnO薄膜的紫外屏蔽性能研究[J]. 中国塑料, 2013,27(1):48-51.
HONG Xiaodong, DENG Enyan, YANG Dongxu. Study on the UV shielding performance of PMMA/nano-ZnO thin film[J]. China Plastics, 2013,27(1):48-51.
[6] WANG C X, LV J C, REN Y, et al. Cotton fabric with plasma pretreatment and ZnO/Carboxymethyl chitosan composite finishing for durable UV resistance and antibacterial property[J]. Carbohydrate Polymers, 2015,138:106-113.
doi: 10.1016/j.carbpol.2015.11.046 pmid: 26794743
[7] KLEMM D, HEUBLEIN B, FINK H P, et al. Cellulose: fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition, 2005,44(22):3358-3393.
pmid: 15861454
[8] 李琳, 赵帅, 胡红旗. 纤维素溶解体系的研究进展[J]. 纤维素科学与技术, 2009,17(2):69-75.
LI Lin, ZHAO Shuai, HU Hongqi. Research progress of cellulose dissolution system[J]. Journal of Cellulose Science and Technology, 2009,17(2):69-75.
[9] CHIELLINI E, SOLARO R. Biodegradable polymeric materials[J]. Advanced Material, 1996,8:305-313.
doi: 10.1002/(ISSN)1521-4095
[10] SHANKAR S, TENG X, LI G, et al. Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films[J]. Food Hydrocolloids, 2015,45:264-271.
doi: 10.1016/j.foodhyd.2014.12.001
[11] 毋伟, 蔡意文, 陈建峰, 等. 表面改性方式对纳米氧化锌紫外吸收性能影响研究[J]. 功能材料, 2004,35:2522-2525, 2529.
WU Wei, CAI Yiwen, CHEN Jianfeng, et al. Study on effects of UV absorption of nano zinc oxide by different surface modification methods[J]. Journal of Functional Materials, 2004,35:2522-2525, 2529.
[12] SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism[J]. Nano-Micro Letters, 2015,7(3):219-242.
doi: 10.1007/s40820-015-0040-x pmid: 30464967
[13] ILLIBERI A, ROOZEBOOM F, POODT P. Spatial atomic layer deposition of zinc oxide thin films[J]. ACS Applied Materials & Interfaces, 2012,4(1):268-272.
doi: 10.1021/am2013097 pmid: 22171693
[14] WANG X H, LI R B, FAN D H. Control growth of catalyst-free high-quality ZnO nanowire arrays on transparent quartz glass substrate by chemical vapor deposition[J]. Applied Surface Science, 2011,257(7):2960-2964.
doi: 10.1016/j.apsusc.2010.10.100
[15] PUURUNEN R L. Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process[J]. Journal of Applied Physics, 2005,97(12):9.
[16] ZHANG C. High-quality oriented ZnO films grown by sol-gel process assisted with ZnO seed layer[J]. Journal of Physics & Chemistry of Solids, 2010,71(3):364-369.
[17] 项荣, 丁栋博, 范亮亮, 等. 氧化锌的抗菌机制及其安全性研究进展[J]. 中国组织工程研究, 2014,18(3):470-475.
XIANG Rong, DING Dongbo, FAN Liangliang, et al. Research progress on antibacterial mechanism and safety of zinc oxide[J]. Chinese Journal of Tissue Engineering Research, 2014,18(3):470-475.
[1] MA Yue, GUO Jing, YIN Juhui, ZHAO Miao, GONG Yumei. Preparation and characterization of cellulose/dialdehyde cellulose/Antarctic krill protein antibacterial fibers [J]. Journal of Textile Research, 2020, 41(11): 34-40.
[2] JIANG Xingmao, LIU Qi, GUO Lin. Structure and antibacterial properties of silica coated silver-copper nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 102-108.
[3] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
[4] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[5] WANG Tingting, LIU Liang, CAO Xiuming, WANG Qingqing. Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers [J]. Journal of Textile Research, 2020, 41(05): 1-7.
[6] WANG Xiaofei, WAN Ailan. Preparation of polypyrrole/silver conductive polyester fabric by ultraviolet exposure [J]. Journal of Textile Research, 2020, 41(04): 112-116.
[7] ZHAO Bing, HUANG Xiaocui, QI Ning, ZHONG Zhou, CHE Mingguo, GE Liangliang. Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond [J]. Journal of Textile Research, 2020, 41(03): 188-196.
[8] WU Qianqian, LI Ke, YANG Lishuang, FU Yijun, ZHANG Yu, ZHANG Haifeng. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings [J]. Journal of Textile Research, 2020, 41(01): 26-31.
[9] ZHANG Zhibin, LI Gang, MAO Senxian, LI Xunxun, CHEN Yushuang, MAO Qingshan, LI Yi, PAN Zhijuan, WANG Xiaoqin. Preparation and antibacterial activity of silk fibroin/chitosan microspheres [J]. Journal of Textile Research, 2019, 40(10): 7-12.
[10] WANG Wencong, FAN Jingjing, DING Chao, WANG Hongbo. Preparation and properties of multifunctional composite conductive wool fabric [J]. Journal of Textile Research, 2019, 40(08): 117-123.
[11] WU Jiao, YU Husheng, WAN Xingyun, TIAN Ping, LI Huimin, HOU Xiaoxin. Preparation and properties of anti-bacterial, anti-mite and anti-mildew functional modified viscose fibers [J]. Journal of Textile Research, 2019, 40(07): 19-23.
[12] SUN Hui, ZHANG Hengyuan, XIAN Yulong, ZHOU Chuankai, YU Bin. Preparation and antibacterial properties of TiO2-Ag/poly(lactic acid) nano-composite fibers [J]. Journal of Textile Research, 2019, 40(04): 1-6.
[13] . Preparation and antibacterial properties of electrospun core shell nanoscale packaging films [J]. Journal of Textile Research, 2018, 39(12): 13-17.
[14] . Chitosan based nanofiber drug loaded system and its sustained release behavior [J]. Journal of Textile Research, 2018, 39(12): 7-12.
[15] . Preparationof porphyrin grafted bacterial cellulose and photodynamic antimicrobial property thereof [J]. Journal of Textile Research, 2018, 39(11): 20-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!