Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (03): 115-121.doi: 10.13475/j.fzxb.20200502207

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Rapid detection method of single-component dye liquor concentration based on machine vision

TIAN Yuhang, WANG Shaozong(), ZHANG Wenchang, ZHANG Qian   

  1. State Key Laboratory of Advanced Forming Technology and Equipment, China Academy of Machinery Science and Technology, Beijing 100083, China
  • Received:2020-05-11 Revised:2020-11-30 Online:2021-03-15 Published:2021-03-17
  • Contact: WANG Shaozong E-mail:wszbit@163.com

Abstract:

A method based on machine vision was proposed to detect the concentration of dye liquor with a single-component for the printing and dyeing industry.With this method, a machine vision detection platform was built with a color adjustable backlight source and an industrial color camera. The single-component dye liquor sample with a concentration range of 0-0.4 g/L was placed on a backlight light source through a glass dish for image acquisition and processing, in order to obtain the color characteristic values of the dye liquor, and to get the relationship between the RGB value and concentration of dye liquor under different light source conditions.Based on Lambert-Beer law, the relational model between the RGB value and dye liquor concentration was built to predict the concentration of dye in the dye liquor.It is verified by experimental fact that for the DRA-3R dye liquor, the minimum value model established under the condition of blue light intensity 50 has the highest prediction accuracy. The absolute value of the average relative error of the results is 3.35%. Experiments show that the method offers fast detection speed and low cost, which provides a certain research base for industrial application of on-line detection of dye liquor concentration.

Key words: machine vision, color backlight source, detection of dye liquor concentration, dye liquor, RGB value

CLC Number: 

  • TS190.4

Fig.1

Diagram of dye liquor concentration detection device based on machine vision"

Fig.2

Prototype of dye liquor concentration detection device"

Tab.1

RGB values of standard samples"

染料型号 染液质量浓度/(g·L-1) R G B
DRA-3B 0.4 205.77 27.6 8.27
DRA-3R 0.4 230.97 118.75 30.13
DRA-3G 0.2 4.26 22.86 49.43

Fig.3

Relationship between R、G、B value and concentration of dye liquor when light source is green and red. (a) Light source is green(level 20); (b) Light source is red(level 10)"

Fig.4

Relationship between R、G、B values and dye concentration when light source is blue with different level. (a) Level 50; (b) Level 20; (c) Level 15; (d) Level 10"

Tab.2

Regression equations and determination coefficients between R、G、B value and concentration of dye liquor"

蓝光亮度等级 因变量 回归方程 决定系数r2
50 R y=78.551 03×10-4.038 84x 0.997 30
G y=410.039 33×10-3.122 55x 0.989 66
B y=2 121.081 35×10-4.575 25x 0.976 26
20 R y=27.567 31×10-4.204 28x 0.996 97
G y=163.335 7×10-3.374 1x 0.998 79
B y=690.187 ×10-4.410 42x 0.992 08
15 R y=20.579 4×10-4.569 75x 0.997 63
G y=122.772 88×10-3.624 28x 0.998 91
B y=444.944 75×10-4.304 12x 0.996 11
10 R y=13.768 9×10-4.314 87x 0.994 49
G y=84.228 05×10-3.363 2x 0.996 65
B y=13.768 9×10-4.043 69x 0.993 99

Tab.3

Equations of linear regression and determination coefficients"

蓝光亮
度等级
因变量 回归方程 决定系数r2
50 lg(R0/R) y=4.27157x-0.02536 0.991 2
20 lg(G0/G) y=3.55831x-0.0204 0.997 5
15 lg(G0/G) y=3.40354x+0.02737 0.993 3
10 lg(G0/G) y=4.52617x-0.22988 0.996 6

Tab.4

Results of liner model verification"

蓝光亮
度等级
染液质量浓度/(g·L-1) 相对
误差/%
平均相对误差
绝对值/%
实际值 预测值
50 0.05 0.050 4 0.75 3.83
0.10 0.051 4 6.61
0.25 0.106 6 -3.58
0.30 0.241 1 -5.25
0.35 0.284 2 -2.28
0.40 0.342 0 -4.53
20 0.05 0.050 6 1.29 3.80
0.10 0.103 4 3.45
0.25 0.241 1 -3.57
0.30 0.283 1 -5.64
0.35 0.337 8 -3.49
0.40 0.378 5 -5.36
15 0.05 0.037 1 -25.84 7.33
0.10 0.096 3 -3.69
0.25 0.242 1 -3.15
0.30 0.284 0 -5.34
0.35 0.346 5 -1.00
0.40 0.380 2 -4.95
10 0.05 0.051 2 2.31 3.45
0.10 0.103 2 3.23
0.25 0.244 4 -2.26
0.30 0.281 5 -6.16
0.35 0.349 5 -0.14
0.40 0.373 6 -6.60

Tab.5

Results of minimum value model verification"

蓝光亮
度等级
染料质量浓度/(g·L-1) 相对
误差/%
平均相对误差
绝对值/%
实际值 预测值
50 0.05 0.047 4 -5.20 3.35
0.10 0.104 1 4.10
0.25 0.245 3 -1.88
0.30 0.290 3 -3.23
0.35 0.342 8 -2.06
0.40 0.385 6 -3.60
20 0.05 0.047 4 -5.20 3.71
0.10 0.108 4 8.40
0.25 0.244 8 -2.08
0.30 0.290 8 -3.07
0.35 0.347 1 -0.83
0.40 0.389 2 2.70
15 0.05 0.041 6 -16.80 6.39
0.10 0.095 7 -4.30
0.25 0.238 0 -4.80
0.30 0.280 4 -6.53
0.35 0.344 3 -1.63
0.40 0.382 9 -4.95
10 0.05 0.045 7 -8.60 3.98
0.10 0.102 0 2.00
0.25 0.258 3 3.32
0.30 0.301 2 0.40
0.35 0.376 8 7.66
0.40 0.407 5 1.87
[1] 叶早萍. 染浴在线监控的染色工艺[J]. 印染, 2008,34(9):47-49.
YE Zaoping. Dyeing process of on-line surveillance in dye bath[J]. China Dyeing & Finishing, 2008,34(9):47-49.
[2] 房文杰. 染液中染料组分的浓度分析[D]. 上海: 东华大学, 2011: 16-18.
FANG Wenjie. Concentration analysis of dyestuffs in dye solution[D]. Shanghai: Donghua University, 2011: 16-18.
[3] MORISHITA SI, YOKOTA H, HIMENO R, et al. Estimation method of fluorescent dye's concentration from multiple fluorescence and the estimation method of fluorescent intensity from multiple fluorescence:US20060200318[P]. 2006-09-07.
[4] 杨军浩. 国外活性染料高效液相色谱分析的新进展[J]. 染料与染色, 2009,46(5):56-60.
YANG Junhao. Technological progresses in HPLC analysis of reactive dyes[J]. Dyestuffs and Coloration, 2009,46(5):56-60.
[5] 向忠, 王宇航, 吴金波, 等. 过氧化氢检测方法研究进展[J]. 纺织学报, 2020,41(10):197-204.
XIANG Zhong, WANG Yuhang, WU Jinbo, et al. Research progress in detection of hydrogen peroxide concentration[J]. Journal of Textile Research, 2020,41(10):197-204.
[6] KATRC R, LUTFIYE Dahil. Spectrophotometric determination and computational study of fluoride in hexavalent chromium electroplating bath[J]. Journal of Fluorine Chemistry, 2020. DOI: 10.1016/j.jfluchem.2020.109462.
pmid: 26213416
[7] 张建新, 张银露, 胡旭东. 光谱优化处理结合多层次支持向量机的混合染液浓度检测方法[J]. 纺织学报, 2017,38(7):90-94.
ZHANG Jianxin, ZHANG Yinlu, HU Xudong. Method of mixed dye liquor concentration detection based on spectral optimization and multi-level support vector machine[J]. Journal of Textile Research, 2017,38(7):90-94.
[8] 张建新, 徐文杰, 许珺. 双波长分光光度法染液吸光度在线检测装置[J]. 纺织学报, 2014,35(9):149-154.
ZHANG Jianxin, XU Wenjie, XU Jun. Development of on-line detection device of dyebath absorbance based on dual wavelength spectrophotometry[J]. Journal of Textile Research, 2014,35(9):149-154.
[9] 房文杰, 屠天民, 张骞, 等. 染液浓度的在线监测初探[J]. 印染, 2011,37(7):12-15, 33.
FANG Wenjie, TU Tianmin, ZHANG Qian, et al. On-line monitoring of dye concentration[J]. China Dyeing & Finishing, 2011,37(7):12-15, 33.
[10] FERUS-COMELO M, 张奔. 溶液中分散染料状态的光谱分析[J]. 国际纺织导报, 2008(6):44-46.
FERUS-COMELO M, ZHANG Ben. Spectroscopic analysis of the state of disperse dyes in solution[J]. Melliand China, 2008(6):44-46.
[11] NISHIDATE I, MAEDA T, NIIZEKI K, et al. Estimation of melanin and hemoglobin using spectral reflectance images reconstructed from a digital RGB image by the Wiener estimation method[J]. Sensors, 2013,13(6):7902-7915.
pmid: 23783740
[12] 王克如, 李少昆, 王崇桃, 等. 用机器视觉技术获取棉花叶片叶绿素浓度[J]. 作物学报, 2006,32(1):34-40.
WANG Keru, LI Shaokun, WANG Chongtao, et al. Acquired chlorophyll concentration of cotton leaves with technology of machine vision[J]. Acta Agronomica Sinica, 2006,32(1):34-40.
[13] 聂玉广. 基于RGB三基色数据的色度测量及不确定度评定研究[D]. 长春: 长春理工大学, 2014: 2-5.
NIE Yuguang. The uncertainty evaluation of color measurement based on RGB trichromatic data[D]. Changchun: Changchun University of Science and Technology, 2014: 2-5.
[14] 汪晨. 紫外-可见光谱技术在连缸染色浓度分析中的应用研究[D]. 杭州: 中国计量学院, 2013: 9-10.
WANG Chen. Research on dye concentration analysis of successive vats dyeing based on UV-Vis spectroscopy[D]. Hangzhou: China Jiliang University, 2013: 9-10.
[15] 杨海燕, 贾贵儒. 基于数字色度学的有色透明溶液浓度快速检测方法[J]. 中国农业大学学报, 2006,11(3):47-50.
YANG Haiyan, JIA Guiru. Study on rapid concentration detection of colored transparentsolution based on digital chromatology[J]. Journal of China Agricultural University, 2006,11(3):47-50.
[1] FENG Wenqian, LI Xinrong, YANG Shuai. Research progress in machine vision algorithm for human contour detection [J]. Journal of Textile Research, 2021, 42(03): 190-196.
[2] ZHU Shigen, YANG Hongxian, BAI Yunfeng, DING Hao, ZHU Qiaolian. Investigation on automatic deformation inspection system of long and thin parts with hooks [J]. Journal of Textile Research, 2020, 41(10): 158-163.
[3] ZHANG Jianxin, LI Qi. Online cheese package yarn density detection system based on machine vision [J]. Journal of Textile Research, 2020, 41(06): 141-146.
[4] LU Hao, CHEN Yuan. Surface defect detection method of carbon fiber prepreg based on machine vision [J]. Journal of Textile Research, 2020, 41(04): 51-57.
[5] WANG Wensheng, LI Tianjian, RAN Yuchen, LU Ying, HUANG Min. Method for position detection of cheese yarn rod [J]. Journal of Textile Research, 2020, 41(03): 160-167.
[6] JIN Shoufeng, LIN Qiangqiang, MA Qiurui, ZHANG Hao. Method for detecting fluff quality of fabric surface based on BP neural network [J]. Journal of Textile Research, 2020, 41(02): 69-76.
[7] JING Junfeng, ZHANG Junyang, ZHANG Huanhuan, SU Zebin. Defect detection on surface of draw texturing yarn packages in gradient space [J]. Journal of Textile Research, 2020, 41(02): 44-51.
[8] SUN Weihong, RUAN Mianjiang, SHAO Tiefeng, LIANG Man. Detection method of cohesive performance of raw silk based on machine vision [J]. Journal of Textile Research, 2019, 40(08): 164-168.
[9] JING Junfeng, ZHANG Xingxing. Fiber glass bobbin yarn hairiness detection based on machine vision [J]. Journal of Textile Research, 2019, 40(05): 157-162.
[10] XU Yang, ZHU Zhichao, SHENG Xiaowei, YU Zhiqi, SUN Yize. Improvement recognition method of vamp's feature points based on machine vision [J]. Journal of Textile Research, 2019, 40(03): 168-174.
[11] JING Junfeng, GUO Gen. Yarn packages hairiness detection based on machine vision [J]. Journal of Textile Research, 2019, 40(01): 147-152.
[12] . On-line yarn cone defects detection system based on machine vision [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 139-145.
[13] . Characterization on anisotropy of fabric wrinkle recovery [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(06): 42-47.
[14] . Testing system for high-speed solenoid valve of knitting machinery based on virtual instrument [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(10): 134-0.
[15] LI Chunlei;CUI Bin;WU Xingkuan;YANG Chongchang;FENG Pei. Study on auto-detecting of spinneret by machine vision [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(11): 126-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!