Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (07): 151-157.doi: 10.13475/j.fzxb.20200503107

• Apparel Engineering • Previous Articles     Next Articles

Influence of wind speed on moisture resistance of single-layer and double-layer combined sportswear knit fabrics

WANG Lijun1,2(), MA Ximing1, DING Yinjia1, CHEN Chengyi1   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Provincial Research Center of Clothing Engineering Technology, Hangzhou, Zhejiang 310018, China
  • Received:2020-05-15 Revised:2021-04-12 Online:2021-07-15 Published:2021-07-22

Abstract:

In order to build an effective prediction model of moisture resistance of single-layer and double-layer combined sportswear knit fabrics in soft wind range, twelve T-shirt fabrics and eight outerwear fabrics which are commonly used were selected for this study. The moisture resistance of fabrics under four wind speeds was tested, and the representative T-shirt and outerwear fabrics were obtained by cluster analysis. By simulating the two-layer dressing state of T-shirt and outerwear, quantitative test of moisture resistance between skin, T-shirt and outerwear under different wind speeds were carried out.The third-order polynomial model of the moisture resistance of T-shirt and outerwear fabric and wind speed, and the linear model between the moisture resistance of double-layer fabrics combination and the moisture resistance of inner and outer layer fabric were constructed. The results show that the moisture resistance of T-shirt, outerwear and double-layer fabrics combination decreases with the increase of wind speed within the range of soft wind, and the moisture resistance of the inner T-shirt fabric has a greater impact on the moisture resistance of the double-layer sportswear fabric combination. The mean absolute percentage error of the prediction models of moisture resistance of T-shirt and outerwear fabric is 2.22% and 4.85% respectively, and the mean absolute percentage error of double-layer fabrics combination moisture resistance model is 3.20%.

Key words: wind speed, sportswear, knit fabric, moisture resistance, prediction model of moisture resistance

CLC Number: 

  • TS941.6

Tab.1

Fabric specification parameters"

试样
编号
试样
名称
组织 成分 线密度/
tex
密度/(线圈·(5 cm)-1) 面密度/
(g·m-2)
厚度/
mm
横向 纵向
1# 汗布 纬平针 100%棉 18.22 70 100 156.67 0.54
2# 汗布 纬平针 100%棉 14.58 84 98 157.33 0.52
3# 棉毛布 双罗纹 100%棉 14.58 84 87 199.33 0.68
4# 弹力罗纹布 1+1罗纹 95%棉、5%氨纶 18.29 57 55 237.33 0.85
5# 汗布 纬平针 95%粘胶、5%氨纶 14.58 85 131 189.33 0.46
6# 珠地网眼布 集圈 100%涤纶 8.33 84 121 127.33 0.49
7# 珠地网眼布 集圈 100%涤纶 8.33 75 91 149.33 0.61
8# 珠地网眼布 集圈 94%涤纶、6%氨纶 8.33 76 65 151.33 0.60
9# 四面弹力布 纬平针 70%粘胶、26%涤纶、4%氨纶 15.39 77 114 286.67 0.80
10# 弹力汗布 纬平针 55%棉、40%涤纶、5%氨纶 17.62 79 107 201.00 0.66
11# 畦编布 畦编 100%涤纶 8.33 92 91 141.33 0.55
12# 半畦编布 半畦编 100%涤纶 8.33 90 96 135.67 0.46
13# 弹力罗纹布 2+2罗纹 96%棉、4%氨纶 27.44 55 66 318.33 1.17
14# 绒布 经编起绒 100%涤纶 16.67 89 94 289.00 0.89
15# 卫衣布 衬垫 95%棉、5%氨纶 18.45 71 88 253.67 0.68
16# 棉毛布 双罗纹 94%涤纶、6%氨纶 16.67 86 139 207.67 0.58
17# 四面弹绒布 长毛绒 90%涤纶、10%氨纶 18.45 67 85 221.67 1.32
18# 卫衣布 衬垫 55%棉、45%涤纶 23.12 78 91 234.67 0.87
19# 弹力罗纹布 2+2罗纹 52%棉、42%涤纶、6%氨纶 17.49 60 82 240.33 1.00
20# 弹力罗马布 双罗纹 65%粘胶、30%锦纶、5%氨纶 11.71 91 144 260.67 0.62

Tab.2

Fabric performance parameters"

试样
编号
织物芯吸高度/cm 干燥速度/
(g·h-1)
透湿率/
(g·m-2·h-1)
透气率/
(mm·s-1)
纵向 横向
1# 0.07 0.05 0.10 542.049 1 155.67
2# 0.03 0.03 0.08 519.117 1 080.00
3# 0.10 0.10 0.04 515.901 523.00
4# 4.23 3.93 0.05 533.451 560.33
5# 9.23 8.80 0.06 553.592 723.33
6# 11.43 13.17 0.16 594.582 1 922.00
7# 5.13 4.92 0.11 556.537 1 267.33
8# 14.80 9.23 0.25 551.943 1 959.33
9# 1.23 1.43 0.02 467.609 309.03
10# 12.40 12.47 0.07 577.856 423.57
11# 19.17 17.73 0.25 569.376 1 516.33
12# 15.67 13.13 0.25 564.547 2 055.00
13# 1.33 0.42 0.05 505.065 418.70
14# 0.87 4.47 0.05 506.007 393.33
15# 0.10 0.13 0.10 537.574 887.33
16# 12.17 12.43 0.12 516.748 1 127.47
17# 1.03 1.53 0.09 489.282 567.00
18# 0.05 0.05 0.05 437.008 546.67
19# 0.07 0.05 0.10 499.435 657.67
20# 10.28 11.23 0.09 500.177 873.70

Fig.1

Self-made net frame"

Fig.2

Three-dimensional relationship between moisture resistance and wind speed, standard moisture resistance of T-shirt fabric (a) and outwear fabric (b) under 4 kinds of wind speed"

Tab.3

Fitting results of T-shirt and outerwear fabrics with different order polynomials"

面料 阶数 RMSE MAE R2 MAPE/%
T恤 一阶 4.418 3 4.146 2 0.736 6 35.430 0
二阶 1.822 4 1.621 3 0.955 2 15.370 0
三阶 0.306 0 0.253 6 0.998 7 2.220 0
四阶 0.249 7 0.183 7 0.999 2 1.510 0
外套 一阶 4.491 0 4.146 3 0.723 8 31.553 2
二阶 2.007 1 1.728 0 0.944 8 14.751 9
三阶 0.717 4 0.574 8 0.993 0 4.850 0
四阶 0.717 2 0.565 2 0.993 0 4.748 2

Fig.3

Clustering results of T-shirt fabrics (a) and outwear fabrics (b)"

Tab.4

Effect of wind speed on moisture resistance of double-layers sportswear fabric combination"

试样编号 织物组合 不同风速下湿阻/(m2·Pa·W-1)
0.1 m/s 0.5 m/s 1.0 m/s 1.5 m/s
Z1 A1B1 46.497 27.956 25.350 22.743
Z2 A1B2 44.477 27.036 22.781 19.258
Z3 A1B3 45.938 27.764 24.241 21.818
Z4 A2B1 44.468 27.026 24.053 21.630
Z5 A2B2 43.181 26.289 22.583 20.343
Z6 A2B3 44.642 27.566 23.128 20.338
Z7 A3B1 42.848 24.674 22.067 19.827
Z8 A3B2 40.829 23.204 20.048 17.258
Z9 A3B3 41.373 23.199 21.691 18.718

Fig.4

Comparison between predicted and output values"

[1] CARAVELLO V. Total evaporative resistance of selected clothing ensembles[D]. Tampa: University of South Florida, 2004: 10-15.
[2] 宗艺晶, 李俊. 消防服热湿舒适性客观测评表征指标的比较[J]. 东华大学学报(自然科学版), 2013, 39(6):748-753.
ZONG Yijing, LI Jun. Comparison of objective evaluation indices on thermal-moisture comfort of firefighting protective clothing[J]. Journal of Donghua University (Natural Science), 2013, 39(6):748-753.
[3] 杨敏, 束琴琴, 戴宏钦, 等. 面料热湿性能对服装热舒适性的影响[J]. 现代丝绸科学与技术, 2015, 30(4):129-132.
YANG Min, SHU Qinqin, DAI Hongqin, et al. The effects of wet fabric thermal properties on clothing thermal comfort[J]. Modern Silk Science & Technology, 2015, 30(4):129-132.
[4] 马希明, 丁殷佳, 王利君. 显汗状态下双层运动服面料热湿舒适性预测[J]. 丝绸, 2020, 57(2):6-12.
MA Ximing, DING Yinjia, WANG Lijun. Prediction of dynamic thermal and wet comfort of sportswear fabric under the sweat state[J]. Journal of Silk, 2020, 57(2):6-12.
[5] 张昭华, 翟世瑾, 尹思源. 衣下间隙对织物系统热湿阻的影响[J]. 纺织学报, 2016, 37(6):101-106.
ZHANG Zhaohua, ZHAI Shijin, YIN Siyuan. Influence of air gaps on thermal and evaporative resistances of fabric system[J]. Journal of Textile Research, 2016, 37(6):101-106.
[6] CUI Z Y, FAN J T, WU Y S. A comparative study on the effects of air gap wind and walking motion on the thermal properties of Arabian Thawbs and Chinese Cheongsams[J]. Ergonomics, 2016, 59(8):999-1008.
doi: 10.1080/00140139.2015.1111428
[7] 于瑶, 钱晓明, 范金土. 风速与步速对服装表面空气层热阻的影响[J]. 纺织学报, 2009, 30(8):107-112.
YU Yao, QIAN Xiaoming, FAN Jintu. Effect of wind velocity and walk speed on thermal insulation of clothing[J]. Journal of Textile Research, 2009, 30(8):107-112.
[8] HAVENITH G, HEUS R, LOTENS W A. Resultant clothing insulation: a function of body movement, posture, wind, clothing fit and ensemble thickness[J]. Ergonomics, 1990, 33(1):67-84.
doi: 10.1080/00140139008927094
[9] NILSSON H O, GAVHED D C, HOLMER I. Effect of step rate on clothing insulation-measurement with a moveable thermal manikin[C]// LOTENS W A, HAVENITH G. Proceedings of the Fifth International Conference on Environmental Ergonomics. Maastricht: [s. n.], 1992: 174-175.
[10] 王发明, 及二丽, 郑智毓, 等. 多层服装热湿传递特性的预测[J]. 苏州大学学报(工科版), 2007, 27(6):1-6.
WANG Faming, JI Erli, ZHENG Zhiyu, et al. Prediction on the heat and moisture transfer property of multi-layers garments[J]. Journal of Soochow University(Engineering Science Edition), 2007, 27(6):1-6.
[11] 赵蒙蒙, 宋晓霞. 通风服装对人体热舒适的影响[J]. 纺织学报, 2017, 38(10):94-97.
ZHAO Mengmeng, SONG Xiaoxia. Influence of clothing adopting ventilation system on thermal comfort[J]. Journal of Textile Research, 2017, 38(10):94-97.
[12] TORVI D A. Heat transfer in thin fibrous materials under high heat flux conditions[D]. Edmonton: University of Alberta, 1997: 1-277.
[13] 朱福忠, 巫班金, 马旭东, 等. 纺织品生理舒适性的测试方法及仪器[J]. 纺织科技进展, 2011(6):64-68.
ZHU Fuzhong, WU Banjin, MA Xudong, et al. Test methods and instruments of physical comfort of textile[J]. Progress in Textile Science & Technology, 2011(6):64-68.
[14] 王玉荣. 商务预测方法[M]. 北京: 对外经济贸易大学出版, 2003: 11-12.
WANG Yurong. Business forecasting method[M]. Beijing: University of Foreign Economics and Trade Press, 2003: 11-12.
[1] SUN Cenwenjie, NI Jun, ZHANG Zhaohua, DONG Wanting. Ventilation design and thermal-wet comfort evaluation of knitted sportswear [J]. Journal of Textile Research, 2020, 41(11): 122-127.
[2] LIU Linyu, CHEN Chengyi, WANG Zhenyu, ZHU Huan, JIN Yanping. Thermal-moisture comfort of multilayered fabric systemsused as firefighting clothing [J]. Journal of Textile Research, 2019, 40(05): 119-123.
[3] . Garment model and process realization of warp-knitting fully fashioned sportswear [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 38-42.
[4] . Warp knit fabric defect detection method based on optimal Gabor filters [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 48-54.
[5] . Analysis of skin deformation of rider during cycling under different road conditions [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 117-122.
[6] . Development and performance evaluation of sportswear based on male body sweating pattern [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(01): 116-122.
[7] . Study of functional structure design of volleyball match sportswear [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 71-0.
[8] . Experimental study of moisture diffusivity for fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(12): 55-0.
[9] LI Min;ZHANG Jinlan;CHENG Chunjiao. Effect of service quality on customer loyalty of sportswear brands [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(2): 119-123.
[10] XU Ruichao;ZHANG Yiping;CHEN Li′na. Properties of differential capillary effect of knitted sportswear fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(3): 20-22.
[11] JIANG Gaoming;FENG Xunwei. Computer simulation for multibar raschel lace [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(1): 40-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!